Saturated and monounsaturated fatty acid status is associated with bone strength estimated by calcaneal ultrasonography in Inuit women from Nunavik (Canada): A cross-sectional study

Abstract

Objective

The aim of this study is to examine the relationship between the status in selected saturated (SFAs) and monounsaturated (MUFAs) fatty acids and the Stiffness Index (SI) in Inuit women from Nunavik (Northern Quebec, Canada).

Design

Cross-sectional descriptive study.

Setting

Inuit population from 14 communities who participated to Qanuippitaa? How are we? Nunavik Inuit Health Survey in 2004.

Participants

187 Inuit women aged 35–72 years.

Measurements

SI was determined by ultrasonography (Achilles InSight device) at the right calcaneus of participants. SFAs and MUFAs contents of erythrocyte membrane phospholipids were measured after transmethylation by gas chromatography coupled with a flame ionization detector. Several factors known to be associated with bone strength were concomitantly recorded. Multiple linear regression was used to investigate relations between selected SFAs, MUFAs and SI, taking into consideration several potential confounders and covariates.

Results

Total SFAs, in particular behenic acid, and cis-vaccenic acid among MUFAs were negatively associated with SI (β = −0.028, SE = 0.011, p = 0.0084; β = −0.060, SE = 0.023, p = 0.0093 and β = −0.087, SE = 0.019, p <0.0001, respectively), whereas total cis-MUFAs and specifically oleic acid were positively associated with SI (β = 0.036, SE = 0.011, p = 0.0008; β = 0.037, SE = 0.011, p = 0.0014, respectively) after adjustment for several covariates.

Conclusion

Saturated and monounsaturated fatty acid status is associated with bone strength estimated by calcaneal SI values in Inuit women from Nunavik.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    [No authors listed]. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 1994; 843: 1–129.

    Google Scholar 

  2. 2.

    Gennari L, Merlotti D, De Paola V, et al. Estrogen receptor gene polymorphisms and the genetics of osteoporosis: a HuGE review. Am J Epidemiol 2005;161(4): 307–320.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Saag KG, Geusens P, et MEDOS Study Group. Progress in osteoporosis and fracture prevention: focus on postmenopausal women. Arthritis Res Ther 2009;11 (5): 251.

    PubMed Central  PubMed  Article  Google Scholar 

  4. 4.

    Bessette L, Ste-Marie LG, Jean S, et al. The care gap in diagnosis and treatment of women with a fragility fracture. Osteoporos Int 2008;1: 79–86.

    Article  Google Scholar 

  5. 5.

    Cummings SR, Melton III LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002;359(9319): 1761–1767.

    PubMed  Article  Google Scholar 

  6. 6.

    Adachi JD, Ioannidis G, Pickard L, et al. The association between osteoporotic fractures and health-related quality of life as measured by the Health Utilities Index in the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int 2003;14(11): 895–904.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Padilla F, Laugier P. Recent developments in trabecular bone characterization using ultrasound. Curr Osteoporos Rep 2005;3(2): 64–69.

    PubMed  Article  Google Scholar 

  8. 8.

    Krieg MA, Barkmann R, Gonnelli S, et al. Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom 2008;11(1): 163–187.

    PubMed  Article  Google Scholar 

  9. 9.

    Moayyeri A, Adams JE, Adler RA, et al. Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis. Osteoporos Int 2012;23(1): 143–153.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Danese RD, Licata AA. Ultrasound of the skeleton: review of its clinical applications and pitfalls. Curr Rheumatol Rep 2001;3(3): 245–248.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Laugier P. Quantitative Ultrasound Instrumentation for Bone In Vivo Characterization. P Laugier and G Haïat (Ed), Bone Quantitative Ultrasound; Springer Science + Business Media B.V (Chapter 3): 2011;pp 47–71.

  12. 12.

    Bjerregaard P, Dewailly E, Ayotte P, Pars T, Ferron L, Mulvad G. Exposure of Inuit in Greenland to organochlorines through the marine diet. J Toxicol Environ Health 2001;62(2): 69–81.

    CAS  Article  Google Scholar 

  13. 13.

    Paunescu AC, Ayotte P, Dewailly É, et al. Polyunsaturated fatty acids and calcaneal ultrasound parameters among Inuit women from Nuuk (Greenland): a longitudinal study. Int J Circumpolar Health 2013;72: 20988. doi.org/10.3402/ijch.v72i0.20988.

    PubMed  Google Scholar 

  14. 14.

    Paunescu AC, Ayotte P, Dewailly E, Dodin S. Eicosapentaenoic acid status is associated with higher values of the calcaneal ultrasound Stiffness index in native women: results of one longitudinal and two cross-sectional studies. Appl Physiol Nutr Metab Just-IN, 2013. doi.10.1139/apnm-2013-0157.

    Google Scholar 

  15. 15.

    Eaton SB, Eaton III SB, Sinclair AJ, Cordain L, Mann NJ. Dietary intake of long-chain polyunsaturated fatty acids during the Paleolithic. In: Simopoulos AP (ed) The return of ?3 fatty acids into the food supply I Land-based animal food products and their health effects vol. 83, 1998. World Rev Nutr Diet. Karger: Basel, pp 12–23. Available from http://www.direct-ms.org/pdf/EvolutionPaleolithic/Long%20chain%20fatty%20acids.pdf. Accessed 2 July 2013.

    Google Scholar 

  16. 16.

    Simopoulos AP. Human requirement for N-3 polyunsaturated fatty acids. Poult Sci 2000;79(7): 961–970.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Albertazzi P, Coupland K. Polyunsaturated fatty acids. Is there a role in postmenopausal osteoporosis prevention.Maturitas 2002;42(1): 13–22.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Salari P, Rezaie A, Larijani B, Abdollahi M. A systematic review of the impact of n-3 fatty acids in bone health and osteoporosis.Med SciMonit 2008;14(3): RA37–44.

    Google Scholar 

  19. 19.

    Maggio M, Artoni A, Lauretani F, et al. The impact of omega-3 fatty acids on osteoporosis. Curr Pharm Des 2009;15(36): 4157–4164.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Lichtenstein AH, Kennedy E, Barrier P, et al. Dietary fat consumption and health. Nutr Rev 1998;56(5 Pt 2): S3–19; discussion S19-28.

    Article  Google Scholar 

  21. 21.

    Sarkis KS, Martini LA, Szejnfeld VL, Pinheiro MM. Low fatness, reduced fat intake and adequate plasmatic concentrations of LDL-cholesterol are associated with high bone mineral density in women: a cross-sectional study with control group. Lipids Health Dis 2012;11: 37. doi: 10.1186/1476-511X-11-37.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. 22.

    Cooper C, Atkinson EJ, Hensrud DD, et al. Dietary protein intake and bone mass in women. Calcif Tissue Int 1996;58(5): 320–325.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Michaëlsson K, Holmberg L, Mallmin H, Wolk A, Bergström R, Ljunghall S. Diet, bone mass, and osteocalcin: a cross-sectional study. Calcif Tissue Int 1995;57(2): 86–93.

    PubMed  Article  Google Scholar 

  24. 24.

    Kato I, Toniolo P, Zeleniuch-Jacquotte A, et al. Diet, smoking and anthropometric indices and postmenopausal bone fractures: a prospective study. Int J Epidemiol 2000;29(1): 85–92.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Karamati M, Jessri M, Shariati-Bafghi SE, Rashidkhani B. Dietary patterns in relation to bone mineral density among menopausal Iranian women. Calcif Tissue Int 2012; 91(1): 40–49. doi: 10.1007/s00223-012-9608-3.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Corwin RL, Hartman TJ, Maczuga SA, Graubard BI. Dietary saturated fat intake is inversely associated with bone density in humans: analysis of NHANES III. J Nutr 2006;136(1): 159–165.

    CAS  PubMed  Google Scholar 

  27. 27.

    Orchard TS, Cauley JA, Frank GC, et al. Fatty acid consumption and risk of fracture in the Women's Health Initiative. Am J Clin Nutr 2010;92 (6): 1452–1460. doi: 10.3945/ajcn.2010.29955.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  28. 28.

    Trichopoulou A, Georgiou E, Bassiakos Y, et al. Energy intake and monounsaturated fat in relation to bone mineral density among women and men in Greece. Prev Med 1997;26(3): 395–400.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Musacchio E, Priante G, Budakovic A, Baggio B. Effects of unsaturated free fatty acids on adhesion and on gene expression of extracellular matrix macromolecules in human osteoblast-like cell cultures. Connect Tissue Res 2007;48(1): 34–38.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Hayek JE, Egeland G, Weiler H. Higher body mass, older age and higher monounsaturated fatty acids intake reflect better quantitative ultrasound parameters in Inuit preschoolers. Int J Circumpolar Health 2012;71: 18999. doi: 10.3402/ijch.v71i0.18999.

    PubMed  Article  Google Scholar 

  31. 31.

    Rochette L, Blanchet C. Nunavik Inuit Health Survey 2004 Qanuippitaa? How are we? Methodological Report (2007): Gouvernement du Québec. Institut national de santé publique du Québec. Nunavik Regional Board of Health and Social Services / Régie régionale de la santé et des services sociaux du Nunavik: 338 p, 2007. http://www.inspq.qc.ca/pdf/publications/692_esi_methodological_report.

    Google Scholar 

  32. 32.

    Medehouenou TC, Larochelle C, Dumas P, Dewailly E, Ayotte P. Determinants of AhRmediated transcriptional activity induced by plasma extracts from Nunavik Inuit adults. Chemosphere 2010;80: 75–82. doi: 10.1016/j.chemosphere.2010.04.017.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Plante C, Blanchet C, Rochette L, O'Brien HT. Prevalence of anemia among Inuit women in Nunavik, Canada. Int J Circumpolar Health 2011;70(2): 154–165.

    PubMed  Article  Google Scholar 

  34. 34.

    Nolin B. Le questionnaire l’Actimètre: méthodologie d’analyse — Critères, codification et algorithmes (2e édition). INSPQ, Québec, Direction Planification, Recherche et Innovation: 27 p., 2004 Available from http://www.santecom.qc.ca/bibliothequevirtuelle/hyperion/9782550488293.pdf. Accessed 2 July 2013.

    Google Scholar 

  35. 35.

    [No authors listed]. Management of osteoporosis in postmenopausal women: 2010 Position Statement of the North American Menopause Society. Menopause 2010;17(1): 25–54. doi: 10.1097/gme.0b013e3181c617e6.

    Article  Google Scholar 

  36. 36.

    Lignes directrices canadiennes pour la classification du poids chez les adultes. Santé Canada. Available from http://www.hc-sc.gc.ca/fn-an/alt_formats/hpfbdgpsa/pdf/nutrition/weight_book-livres_des_poids-fra.pdf. Accessed 2 July 2013.

  37. 37.

    Griffith JF, Yeung DK, Ahuja AT, et al. A study of bone marrow and subcutaneous fatty acid composition in subjects of varying bone mineral density. Bone 2009;44(6): 1092–1096.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Cater NB, Denke MA. Behenic acid is a cholesterol-raising saturated fatty acid in humans. Am J Clin Nutr 2001;73(1): 41–44.

    CAS  PubMed  Google Scholar 

  39. 39.

    Chong MF, Fielding BA, Frayn KN. Metabolic interaction of dietary sugars and plasma lipids with a focus on mechanisms and de novo lipogenesis. Proc Nutr Soc 2007;66(1): 52–59.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Lemaitre RN, King IB, Sotoodehnia N, et al. Endogenous red blood cell membrane fatty acids and sudden cardiac arrest. Metabolism 2010;59(7): 1029–1034. doi: 10.1016/j.metabol.2009.10.026.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  41. 41.

    Mozaffarian D. Trans fatty acids-effects on systemic inflammation and endothelial function. Atheroscler Suppl 2006;7(2): 29–32.

    CAS  Article  Google Scholar 

  42. 42.

    Teegala SM, Willett WC, Mozaffarian D. Consumption and health effects of trans fatty acids: a review. J AOAC Int 2009;92(5): 1250–1257.

    CAS  PubMed  Google Scholar 

  43. 43.

    Micha R, Mozaffarian D. Trans fatty acids: effects on cardiometabolic health and implications for policy. Prostaglandins Leukot Essent Fatty Acids 2008;79(3–5): 147–152.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  44. 44.

    Thompson AK, Minihane AM, Williams CM. Trans fatty acids, insulin resistance and diabetes. Eur J Clin Nutr 2011;65(5): 553–564. doi: 10.1038/ejcn.2010.240.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Thompson AK, Minihane AM, Williams CM. Trans fatty acids and weight gain. Int J Obes (Lond) 2011;35(3): 315–324. doi: 10.1038/ijo.2010.141. Epub 2010 Jul 20.

    CAS  Article  Google Scholar 

  46. 46.

    Lock AL, Bauman DE. Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids 2004;39(12): 1197–1206.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Haug A, Sjøgren P, Hølland N, et al. Effects of butter naturally enriched with conjugated linoleic acid and vaccenic acid on blood lipids and LDL particle size in growing pigs. Lipids Health Dis 2008;7: 31.

    PubMed Central  PubMed  Article  Google Scholar 

  48. 48.

    Adlof RO, Duval S, Emken EA. Biosynthesis of conjugated linoleic acid in humans. Lipids 2000;35(2): 131–135.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Turpeinen AM, Mutanen M, Aro A, et al. Bioconversion of vaccenic acid to conjugated linoleic acid in humans. Am J Clin Nutr 2002;76(3): 504–510.

    CAS  PubMed  Google Scholar 

  50. 50.

    Gebauer SK, Chardigny JM, Jakobsen MU, et al. Effects of Ruminant trans Fatty Acids on Cardiovascular Disease and Cancer: A Comprehensive Review of Epidemiological, Clinical, and Mechanistic Studies. Adv Nutr 2011;2: 332–354. doi: 10.3945/an.111.000521. Epub 2011 Jun 28.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  51. 51.

    Block R, Kakinami L, Liebman S, Shearer GC, Kramer H, Tsai M. Cis-vaccenic acid and the Framingham risk score predict chronic kidney disease: the multi-ethnic study of atherosclerosis (MESA). Prostaglandins Leukot Essent Fatty Acids 2012;86(4–5): 175–182. doi: 10.1016/j.plefa.2012.02.009.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  52. 52.

    Carrillo C, Cavia Mdel M, Alonso-Torre S. Role of oleic acid in immune system; mechanism of action; a review. Nutr Hosp 2012;27(4): 978–990. doi: 10.3305/nh.2012.27.4.5783.

    CAS  PubMed  Google Scholar 

  53. 53.

    Bartolí R, Fernández-Bañares F, Navarro E, et al. Effect of olive oil on early and late events of colon carcinogenesis in rats: modulation of arachidonic acid metabolism and local prostaglandin E2 synthesis. Gut; 2000;46(2): 191–199.

    PubMed Central  PubMed  Article  Google Scholar 

  54. 54.

    Siriwardhana N, Kalupahana NS, Cekanova M, LeMieux M, Greer B, Moustaid-Moussa N. Modulation of adipose tissue inflammation by bioactive food compounds. [Reviews: current topics]. J Nutr Biochem 24(4): 2013;613–623. doi: 10.1016/j.jnutbio.2012.12.013.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Harvey KA, Walker CL, Xu Z, et al. Oleic acid inhibits stearic acid-induced inhibition of cell growth and pro-inflammatory responses in human aortic endothelial cells. J Lipid Res 2010;51(12): 3470–3480. doi: 10.1194/jlr.M010371.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  56. 56.

    Granados N, Amengual J, Ribot J, Palou A, Bonet ML. Distinct effects of oleic acid and its trans-isomer elaidic acid on the expression of myokines and adipokines in cell models. Br J Nutr 2011;105(8): 1226–1234. doi: 10.1017/S0007114510004885.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    van Dijk SJ, Feskens EJ, Bos MB, et al. A saturated fatty acid-rich diet induces an obesitylinked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome. Am J Clin Nutr 2009;90(6): 1656–1664.

    PubMed  Article  Google Scholar 

  58. 58.

    Yoneyama Yoneyama S, Miura K, Sasaki S, et al. Dietary intake of fatty acids and serum C-reactive protein in Japanese. J Epidemiol 2007;17(3): 86–92.

    PubMed  Article  Google Scholar 

  59. 59.

    Young TK. Are the circumpolar Inuit becoming obese?Am J Hum Biol 2007;19(2): 181–189.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Cao J. Effects of obesity on bone metabolism. J Orthop Surg Res 2011;6: 30. doi: 10.1186/1749-799X-6-30.

    PubMed Central  PubMed  Article  Google Scholar 

  61. 61.

    Migliaccio S, Greco EA, Fornari R, Donini LM, Lenzi A. Is obesity in women protective against osteoporosis? Diabetes Metab Syndr Obes 2011;4: 273–282. doi: 10.2147/DMSO.S11920.

    PubMed Central  PubMed  Article  Google Scholar 

  62. 62.

    Kim KC, Shin DH, Lee SY, Im JA, Lee DC. Relation between obesity and bone mineral density and vertebral fractures in Korean postmenopausal women. Yonsei Med J 2010;51(6): 857–863. doi: 10.3349/ymj.2010.51.6.857.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  63. 63.

    Young TK, Bjerregaard P, Dewailly E, Risica PM, Jørgensen ME, Ebbesson SE. Prevalence of obesity and its metabolic correlates among the circumpolar inuit in 3 countries. Am J Public Health 2007;97(4): 691–695.

    PubMed Central  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pierre Ayotte.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paunescu, A.C., Ayotte, P., Dewailly, E. et al. Saturated and monounsaturated fatty acid status is associated with bone strength estimated by calcaneal ultrasonography in Inuit women from Nunavik (Canada): A cross-sectional study. J Nutr Health Aging 18, 663–671 (2014). https://doi.org/10.1007/s12603-014-0498-0

Download citation

Key words

  • Bone strength
  • Inuit
  • saturated and monounsaturated fatty acids