The journal of nutrition, health & aging

, Volume 18, Issue 3, pp 307–312 | Cite as

Spatial variability during gait initiation while dual tasking is increased in individuals with mild cognitive impairment

  • S. Boripuntakul
  • S. R. Lord
  • M. A. D. Brodie
  • S. T. Smith
  • P. Methapatara
  • N. Wongpakaran
  • Somporn Sungkarat
Article

Abstract

Background

Gait initiation (GI) is a complex transition phase of gait that can induce postural instability. Gait impairment has been well documented in people with Alzheimer’s disease, but it is still inconclusive in individuals with Mild Cognitive Impairment (MCI). Previous studies have usually investigated gait performance of cognitive impaired persons under steady state walking.

Objective

This study aimed to examine spatiotemporal variability during GI under single- and dual-task conditions in people with and without MCI.

Methods

Spatiotemporal stepping characteristics and variability under single- and dual-task conditions (counting backwards by 3s) were assessed in 30 older adults with MCI and 30 cognitively intact controls. Mean and coefficients of variation (COV) of swing time, step time, step length and step width were compared between the two groups.

Results

Mixed-model repeated measures ANOVA revealed a significant Group x Walking condition interaction for COV of step length and step width (P<0.05). Post-hoc analysis revealed that variability for these measures were significantly larger in the MCI group compared with the control group under the dual-task condition (P<0.05).

Conclusions

Step length and step width variability is increased in people with MCI during GI, particularly in a condition involving a secondary cognitive task. These findings suggest that individuals with MCI have reduced balance control when undertaking a challenging walking task such as gait initiation, and this is exacerbated with an added cognitive task. Future studies should prospectively investigate the relationship between GI variability and fall risk in this population.

Key words

Gait initiation gait variability dual-task Mild Cognitive Impairment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Verghese J, Robbins M, Holtzer R, Zimmerman M, Wang C, Xue X. Gait dysfunction in mild cognitive impairment syndromes. J Am Geriatr Soc 2008;56: 1244–1251.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Pettersson AF, Olsson E, Wahlund LO. Motor function in subjects with mild cognitive impairment and early Alzheimer’s disease. Dement Geriatr Cogn Disord 2005;19: 299–304.PubMedCrossRefGoogle Scholar
  3. 3.
    Pettersson AF, Olsson E, Wahlund LO. Effect of divided attention on gait in subjects with and without cognitive impairment. J Geriatr Psychiatry Neurol 2007;20: 58–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Hausdorff JM. Gait variability: methods, modeling and meaning. J Neuroeng Rehabil 2005;2: 19.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Hausdorff JM, Edelberg HK, Mitchell SL, Goldberger AL, Wei JY. Increased gait unsteadiness in community-dwelling elderly fallers. Arch Phys Med Rehabil 1997;78: 278–283.PubMedCrossRefGoogle Scholar
  6. 6.
    Sheridan PL, Hausdorff JM. The role of higher-level cognitive function in gait: executive dysfunction contributes to fall risk in Alzheimer’s disease. Dement Geriatr Cogn Disord 2007; 24: 125–137.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Chang H, Krebs DE. Dynamic balance control in elders: gait initiation assessment as a screening tool. Arch Phys Med Rehabil 1999;80: 490–494.PubMedCrossRefGoogle Scholar
  8. 8.
    Martin M, Shinberg M, Kuchibhatla M, Ray L, Carollo JJ, Schenkman ML. Gait initiation in community-dwelling adults with Parkinson disease: comparison with older and younger adults without the disease. Phys Ther 2002;82: 566–577.PubMedGoogle Scholar
  9. 9.
    Polcyn AF, Lipsitz LA, Kerrigan DC, Collins JJ. Age-related changes in the initiation of gait: degradation of central mechanisms for momentum generation. Arch Phys Med Rehabil 1998;79: 1582–1589.PubMedCrossRefGoogle Scholar
  10. 10.
    Jian Y, Winter DA, Ishac MG, Gilchrist L. Trajectory of the body COG and COP during initiation and termination of gait. Gait Posture 1993;1: 9–22.CrossRefGoogle Scholar
  11. 11.
    Burleigh AL, Horak FB, Malouin F. Modification of postural responses and step initiation: evidence for goal-directed postural interactions. J Neurophysiol 1994;72: 2892–2902.PubMedGoogle Scholar
  12. 12.
    Mann RA, Hagy JL, White V, Liddell D. The initiation of gait. J Bone Joint Surg Am 1979;61:232–239.PubMedGoogle Scholar
  13. 13.
    Winter DA. Anatomy, biomechanics and control of balance during standing and walking. Waterloo, Canada: Waterloo Biomechanics, 1995.Google Scholar
  14. 14.
    Gehisen GM, Whaley MH. Falls in the elderly: Part I, Gait. Part II, balance, strength, and flexibility. Arch Phys Med Rehabil 1990;71: 735–769.Google Scholar
  15. 15.
    Ashley MJ, Gryfe CI, Amies A. A longitudinal study of falls in an elderly population II. Some circumstances of falling. Age Ageing 1977;6: 211–220.PubMedCrossRefGoogle Scholar
  16. 16.
    Tinetti ME, Doucette JT, Claus EB. The contribution of predisposing and situational risk factors to serious fall injuries. J Am Geriatr Soc 1995;43: 1207–1213.PubMedGoogle Scholar
  17. 17.
    Wittwer JE, Andrews PT, Webster KE, Menz HB. Timing variability during gait initiation is increased in people with Alzheimer’s disease compared to controls. Dement Geriatr Cogn Disord 2008;26: 277–283.PubMedCrossRefGoogle Scholar
  18. 18.
    Mbourou GA, Lajoie Y, Teasdale N. Step length variability at gait initiation in elderly fallers and non-fallers, and young adults. Gerontology 2003;49: 21–26.PubMedCrossRefGoogle Scholar
  19. 19.
    Roemmich RT, Nocera JR, Vallabhajosula S, Amano S, Naugle KM, Stegemoller EL, Hass CJ. Spatiotemporal variability during gait initiation in Parkinson’s disease. Gait Posture 2012;36: 340–343.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Beauchet O, Allali G, Launay C, Herrmann FR, Annweiler C. Gait variability at fast-pace walking speed: a biomarker of mild cognitive impairment? J Nutr Health Aging 2013;17:235–239.PubMedCrossRefGoogle Scholar
  21. 21.
    Beauchet O, Allali G, Launay C, Herrmann FR, Annweiler C. Gait variability at fast-pace walking speed: a biomarker of mild cognitive impairment? J Nutr Health Aging 2013;17:235–239.PubMedCrossRefGoogle Scholar
  22. 22.
    Montera-Odasso M, Muir SW, Speechley M. Dual-task complexity affects gait in people with mild cognitive impairment: the interplay between gait variability, dual tasking, and risk of falls. Arch Phys Med Rehabil 2012;93: 293–299.CrossRefGoogle Scholar
  23. 23.
    Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rosser M, Thal L, Winblad B. Current concepts in mild cognitive impairment. Arch Neurol 2001;58: 1985–1992.PubMedCrossRefGoogle Scholar
  24. 24.
    Liu-Ambrose TY, Ashe MC, Graf P, Beattie BL, Khan KM. Increased risk of falling in older community-dwelling women with mild cognitive impairment. Phys Ther 2008;88: 1482–1491.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Montero-Odasso M, Casas A, Hansen TK, Bilski P, Gutmanis I. Quantitative gait analysis under dual-task in older people with mild cognitive impairment: a reliability study. J NeuroEng Rehabil 2009;6: 35–41.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. JAGS 2005;53: 695–699.CrossRefGoogle Scholar
  27. 27.
    Train The Brain Forum Committee. Thai Geriatric Depression Scale-TGDS. Siriraj Hosp Gaz 1994;46: 1–9.Google Scholar
  28. 28.
    Delis DC, Kaplan E. Delis-Kaplan Executive Function System (D-KEFS). San Antonio: The Psychological Corporation, 2001.Google Scholar
  29. 29.
    Kortte KB, Horner MD, Windham WK. The trail making test, Part B: Cognitive flexibility or ability to maintain set? Appl Neuropsychol 2002;9: 106–109.PubMedCrossRefGoogle Scholar
  30. 30.
    Ostrosky-Soli’s F, Lozano A. Digit Span: effect of education and culture. Int J Psychol 2006;41:333–341.CrossRefGoogle Scholar
  31. 31.
    Quinlan DM, Brown TE. Assessment of short-term verbal memory impairments in adolescents and adults with ADHD. Journal of attention disorders 2003;6: 143–152.PubMedCrossRefGoogle Scholar
  32. 32.
    Wechsler D. Wechsler Adult Intelligence Scale (WAIS) III: Administration and scoring manual 3rd ed. San Antonio: The psychological Corporation, Harcourt Brace Company, 1997.Google Scholar
  33. 33.
    Tinetti ME, Richman D, Powell L. Falls efficacy as a measure of fear of falling. J Gerontol 1990;45: 239–243.CrossRefGoogle Scholar
  34. 34.
    Hausdorff JM, Ladin Z, Wei JY. Footswitch system for measurement of the temporal parameters of gait. J Biomech 1995;28: 347–351.PubMedCrossRefGoogle Scholar
  35. 35.
    Nissan M, Whittle MW. Initiation of gait in normal subjects: a preliminary study. J Biomed Eng 1990;12: 165–171.PubMedCrossRefGoogle Scholar
  36. 36.
    Perneger TV. What’s wrong with Bonferroni adjustments. BMJ 1998;316: 1236–1238.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Sheridan PL, Solomont J, Kowall N. Influence of executive function on locomotor function: Divided attention increases gait variability in Alzheimer’s disease. J Am Geriatr Soc 2003;5: 1633–1637.CrossRefGoogle Scholar
  38. 38.
    Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 2002;16: 1–14.PubMedCrossRefGoogle Scholar
  39. 39.
    Ashley MJ, Gryfe CI, Amies A. A longitudinal study of falls in an elderly population II. Some circumstances of falling. Age Ageing 1977;6: 211–220.CrossRefGoogle Scholar
  40. 40.
    Robinovitch SN, Feldman F, Yang Y, Schonnop R, Lueng PM, Sarraf T, Sims-Gould J, Loughin M. Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. Lancet 2013;381: 47–54.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Whitwell JL, Weigand SD, Shiung MM, Boeve BF, Ferman TJ, Smith GE, Knopman DS, Petersen RC, Benarroch EE, Josephs KA, Jack CR. Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer’s disease. Brain 2007;130: 708–719.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Delbaere K, Kochan NA, Close JC, Menant JC, Sturnieks DL, Brodaty H Sachdev PS, Lord SR. Mild cognitive impairment as a predictor of falls in community-dwelling older people. Am J Geriatr Psychiatry 2012;20: 845–53.PubMedCrossRefGoogle Scholar

Copyright information

© Serdi and Springer-Verlag France 2014

Authors and Affiliations

  • S. Boripuntakul
    • 1
  • S. R. Lord
    • 2
  • M. A. D. Brodie
    • 2
  • S. T. Smith
    • 2
  • P. Methapatara
    • 3
  • N. Wongpakaran
    • 4
  • Somporn Sungkarat
    • 1
  1. 1.Faculty of Associated Medical SciencesChiang Mai UniversityChiang MaiThailand
  2. 2.Neuroscience Research AustraliaUniversity of New South WalesKensingtonAustralia
  3. 3.Suanprung HospitalChiang MaiThailand
  4. 4.Department of Psychiatry, Faculty of MedicineChiang Mai UniversityChiang MaiThailand

Personalised recommendations