Skip to main content
Log in

Use of biomarkers and imaging to assess pathophysiology, mechanisms of action and target engagement

  • Published:
The journal of nutrition, health & aging

Abstract

Multidisciplinary basic research led to an evolving knowledge of the molecular pathogenesis of Alzheimer’s disease (AD). These advances have been translated into defined therapeutic concepts and distinct classes of compounds with putative disease-modifying effects that are now being tested in clinical trials. There is a growing consensus that disease-modifying treatments may be most effective when commenced early in the course and progression of AD pathophysiology, before amyloid deposition and neurodegeneration become too widespread. Biological indicators of pathophysiological mechanisms are required to chart and identify AD in the prodromal phase or, preferably, in asymptomatic individuals. Biomarkers are becoming even more important, owing to the challenges in demonstrating efficacy of candidate-drugs that hit pathophysiological targets using clinical and cognitive outcomes in early AD trials with limited duration. Currently, there is emerging consensus that advances in therapeutic strategies for AD that delay predefined milestones or slow the cognitive and disease progression would considerably decrease the expanding global burden of the disease. To effectively test preventive compounds for AD and bring therapy to affected individuals as early as possible there is an urgent need for a concerted collaboration among worldwide academic institutions, industry, and regulatory bodies with the aim of establishing networks for the identification and qualification of multi-modal biological disease markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hampel H, Lista S, Khachaturian ZS (2012) Development of biomarkers to chart all Alzheimer’s disease stages: the royal road to cutting the therapeutic Gordian Knot. Alzheimers Dement 8:312–336.

    Article  PubMed  CAS  Google Scholar 

  2. Hampel H (2012) Amyloid-β and Cognition in Aging and Alzheimer’s Disease: Molecular and Neurophysiological Mechanisms. J Alzheimers Dis. DOI: 10.3233/JAD-2012-129003.

  3. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356.

    Article  PubMed  CAS  Google Scholar 

  4. Hardy J (2006) Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal. J Alzheimers Dis 9:151–153.

    PubMed  CAS  Google Scholar 

  5. Herrup K (2010) Reimagining Alzheimer’s disease—an age-based hypothesis. J Neurosci 30:16755–16762.

    Article  PubMed  CAS  Google Scholar 

  6. Hampel H, Shen Y, Walsh DM, Aisen P, Shaw LM, Zetterberg H, Trojanowski JQ, Blennow K (2010a) Biological markers of amyloid beta-related mechanisms in Alzheimer’s disease. Exp Neurol 223:334–346.

    Article  PubMed  CAS  Google Scholar 

  7. Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K (2012) Abnormal Hyperphosphorylation of Tau: Sites, Regulation, and Molecular Mechanism of Neurofibrillary Degeneration. J Alzheimers Dis. DOI: 10.3233/JAD-2012-129031.

  8. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Liu E, Morris JC, Petersen RC, Saykin AJ, Schmidt ME, Shaw L, Siuciak JA, Soares H, Toga AW, Trojanowski JQ (2012) The Alzheimer’s Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement 8:S1S68.

    Article  Google Scholar 

  9. Hampel H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J, Herholz K, Bokde AL, Jessen F, Hoessler YC, Sanhai WR, Zetterberg H, Woodcock J, Blennow K (2010) Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 9:560–574.

    Article  PubMed  CAS  Google Scholar 

  10. Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144.

    Article  PubMed  CAS  Google Scholar 

  11. Mullard A (2012) Sting of Alzheimer’s failures offset by upcoming prevention trials. Nat Rev Drug Discov 11:657–660.

    Article  PubMed  CAS  Google Scholar 

  12. Vellas B, Aisen PS, Sampaio C, Carrillo M, Scheltens P, Scherrer B, Frisoni GB, Weiner M, Schneider L, Gauthier S, Gispen-de Wied CC, Hendrix S, Feldman H, Cedarbaum J, Petersen R, Siemers E, Andrieu S, Prvulovic D, Touchon J, Hampel H (2011) Prevention trials in Alzheimer’s disease: an EU-US task force report. Prog Neurobiol 95:594–600.

    Article  PubMed  Google Scholar 

  13. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O’brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746.

    Article  PubMed  Google Scholar 

  14. Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, Gauthier S, Hampel H, Jicha GA, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Sarazin M, de Souza LC, Stern Y, Visser PJ, Scheltens P (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9:1118–1127.

    Article  PubMed  Google Scholar 

  15. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269.

    Article  PubMed  Google Scholar 

  16. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279.

    Article  PubMed  Google Scholar 

  17. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292.

    Article  PubMed  Google Scholar 

  18. Hörig H, Pullman W (2004) From bench to clinic and back: Perspective on the 1st IQPC Translational Research conference. J Transi Med 2:44.

    Article  Google Scholar 

  19. Blennow K, Zetterberg H, Minthon L, Lannfelt L, Strid S, Annas P, Basun H, Andreasen N (2007) Longitudinal stability of CSF biomarkers in Alzheimer’s disease. Neurosci Lett. 419:18–22.

    Article  PubMed  CAS  Google Scholar 

  20. Zetterberg H, Pedersen M, Lind K, Svensson M, Rolstad S, Eckerström C, Syversen S, Mattsson UB, Ysander C, Mattsson N, Nordlund A, Vanderstichele H, Vanmechelen E, Jonsson M, Edman A, Blennow K, Wallin A (2007) Intra-individual stability of CSF biomarkers for Alzheimer’s disease over two years. J Alzheimers Dis 12:255–260.

    PubMed  CAS  Google Scholar 

  21. Blennow K. (2010) Biomarkers in Alzheimer’s disease drug development. Nat Med 16:1218–1222.

    Article  PubMed  CAS  Google Scholar 

  22. Zetterberg H, Mattsson N, Blennow K, Olsson B (2010) Use of theragnostic markers to select drugs for phase II/III trials for Alzheimer disease. Alzheimers Res Ther 2:32.

    Article  PubMed  CAS  Google Scholar 

  23. Black D, Henry B (2008) Realizing the potential of new therapeutic targets. Found in translation. Biochemist e-volution. The Biochemical Society 28–30.

  24. Workman P (2003) How much gets there and what does it do?: The need for better pharmacokinetic and pharmacodynamic endpoints in contemporary drug discovery and development. Curr Pharm Des 9:891–902.

    Article  PubMed  CAS  Google Scholar 

  25. Sarker D, Workman P (2007) Pharmacodynamic biomarkers for molecular cancer therapeutics. Adv Cancer Res 96:213–268.

    Article  PubMed  CAS  Google Scholar 

  26. Roychoudhury S (2008) Incorporation of Biomarkers in Drug Development — Impact on Cross-functional Research and Development Strategy. Touch Briefings 29-31.

  27. Hampel H, Bürger K, Teipel SJ, Bokde AL, Zetterberg H, Blennow K (2008) Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers Dement 4:38–48.

    Article  PubMed  CAS  Google Scholar 

  28. Teipel SJ, Sabri O, Grothe M, Barthel H, Prvulovic D, Buerger K, Bokde AL, Ewers M, Hoffmann W, Hampel H (2012) Perspectives for Multimodal Neurochemical and Imaging Biomarkers in Alzheimer’s Disease. J Alzheimers Dis. DOI: 10.3233/JAD-2012-129030.

  29. Ewers M, Sperling RA, Klunk WE, Weiner MW, Hampel H (2011) Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci 34:430–442.

    Article  PubMed  CAS  Google Scholar 

  30. Hampel H, Lista S (2012) Alzheimer disease: From inherited to sporadic AD-crossing the biomarker bridge. Nat Rev Neurol. DOI: 10.1038/nrneurol.2012.202.

  31. Forlenza OV, Diniz BS, Gattaz WF (2010) Diagnosis and biomarkers of predementia in Alzheimer’s disease. BMC Med 8:89.

    Article  PubMed  Google Scholar 

  32. Hampel H, Blennow K, Shaw LM, Hoessler YC, Zetterberg H, Trojanowski JQ (2010b) Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp Gerontol 45:30–40.

    Article  PubMed  CAS  Google Scholar 

  33. Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, Herukka SK, van der Flier WM, Blankenstein MA, Ewers M, Rich K, Kaiser E, Verbeek M, Tsolaki M, Mulugeta E, Rosén E, Aarsland D, Visser PJ, Schröder J, Marcusson J, de Leon M, Hampel H, Scheltens P, Pirttilä T, Wallin A, Jönhagen ME, Minthon L, Winblad B, Blennow K (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302:385–393.

    Article  PubMed  CAS  Google Scholar 

  34. Visser PJ, Verhey F, Knol DL, Scheltens P, Wahlund LO, Freund-Levi Y, Tsolaki M, Minthon L, Wallin AK, Hampel H, Bürger K, Pirttila T, Soininen H, Rikkert MO, Verbeek MM, Spiru L, Blennow K (2009) Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study. Lancet Neurol 8:619–627.

    Article  PubMed  Google Scholar 

  35. Buchhave P, Minthon L, Zetterberg H, Wallin AK, Blennow K, Hansson O (2012) Cerebrospinal fluid levels of β-amyloid 1–42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen Psychiatry 69:98–106.

    Article  PubMed  CAS  Google Scholar 

  36. Jack CR Jr, Vemuri P, Wiste HJ, Weigand SD, Aisen PS, Trojanowski JQ, Shaw LM, Bernstein MA, Petersen RC, Weiner MW, Knopman DS (2011) Evidence for ordering of Alzheimer disease biomarkers. Arch Neurol 68:1526–1535.

    Article  PubMed  Google Scholar 

  37. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128.

    Article  PubMed  CAS  Google Scholar 

  38. Jack CR Jr, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, Shiung MM, Gunter JL, Boeve BF, Kemp BJ, Weiner M, Petersen RC (2009) Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 132:1355–1365.

    Article  PubMed  Google Scholar 

  39. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC; Dominantly Inherited Alzheimer Network (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804.

    Article  PubMed  CAS  Google Scholar 

  40. Irizarry MC (2004) Biomarkers of Alzheimer disease in plasma. NeuroRx 1:226–234.

    Article  PubMed  Google Scholar 

  41. Vanderstichele H, Van Kerschaver E, Hesse C, Davidsson P, Buyse MA, Andreasen N, Minthon L, Wallin A, Blennow K, Vanmechelen E (2000) Standardization of measurement of beta-amyloid(l–42) in cerebrospinal fluid and plasma. Amyloid 7:245–258.

    Article  PubMed  CAS  Google Scholar 

  42. Zetterberg H, Tullhög K, Hansson O, Minthon L, Londos E, Blennow K (2010) Low incidence of post-lumbar puncture headache in 1,089 consecutive memory clinic patients. Eur Neurol 63:326–330.

    Article  PubMed  Google Scholar 

  43. Hampel H, Wilcock G, Andrieu S, Aisen P, Blennow K, Broich K, Carrillo M, Fox NC, Frisoni GB, Isaac M, Lovestone S, Nordberg A, Prvulovic D, Sampaio C, Scheltens P, Weiner M, Winblad B, Coley N, Vellas B; Oxford Task Force Group (2011) Biomarkers for Alzheimer’s disease therapeutic trials. Prog Neurobiol 95:579–593.

    Article  PubMed  CAS  Google Scholar 

  44. Tapiola T, Alafuzoff I, Herukka SK, Parkkinen L, Hartikainen P, Soininen H, Pirttila T (2009) Cerebrospinal fluid {beta}-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 66:382–389.

    Article  PubMed  Google Scholar 

  45. Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, LaRossa GN, Spinner ML, Klunk WE, Mathis CA, DeKosky ST, Morris JC, Holtzman DM (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59:512–519.

    Article  PubMed  CAS  Google Scholar 

  46. Strozyk D, Blennow K, White LR, Launer O (2003) CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 60:652–656.

    Article  PubMed  CAS  Google Scholar 

  47. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344.

    Article  PubMed  CAS  Google Scholar 

  48. Panza F, Solfrizzi V, Frisardi V, Imbimbo BP, Capurso C, D’Introno A, Colacicco AM, Seripa D, Vendemiale G, Capurso A, Pilotto A (2009) Beyond the neurotransmitter-focused approach in treating Alzheimer’s disease: drugs targeting beta-amyloid and tau protein. Aging Clin Exp Res 21:386–406.

    PubMed  CAS  Google Scholar 

  49. Galimberti D, Scarpini E (2011) Disease-modifying treatments for Alzheimer’s disease. Ther Adv Neurol Disord 4:203–216.

    Article  PubMed  CAS  Google Scholar 

  50. Anderson JJ, Holtz G, Baskin PP, Turner M, Rowe B, Wang B, Kounnas MZ, Lamb BT, Barten D, Felsenstein K, McDonald I, Srinivasan K, Munoz B, Wagner SL (2005) Reductions in beta-amyloid concentrations in vivo by the gamma-secretase inhibitors BMS-289948 and BMS-299897. Biochem Pharmacol 69:689–698.

    Article  PubMed  CAS  Google Scholar 

  51. Lanz TA, Hosley JD, Adams WJ, Merchant KM (2004) Studies of Abeta pharmacodynamics in the brain, cerebrospinal fluid, and plasma in young (plaque-free) Tg2576 mice using the gamma-secretase inhibitor N2-[(2S)-2-(3,5-difl uoropheny l)-2-hydroxy ethanoyl]-Nl-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide (LY-411575). J Pharmacol Exp Ther 309:49–55.

    Article  PubMed  CAS  Google Scholar 

  52. Sankaranarayanan S, Holahan MA, Colussi D, Crouthamel MC, Devanarayan V, Ellis J, Espeseth A, Gates AT, Graham SL, Gregro AR, Hazuda D, Hochman JH, Holloway K, Jin L, Kahana J, Lai MT, Lineberger J, McGaughey G, Moore KP, Nantermet P, Pietrak B, Price EA, Rajapakse H, Stauffer S, Steinbeiser MA, Seabrook G, Seinick HG, Shi XP, Stanton MG, Swestock J, Tugusheva K, Tyler KX, Vacca JP, Wong J, Wu G, Xu M, Cook JJ, Simon AT (2009) First demonstration of cerebrospinal fluid and plasma A beta lowering with oral administration of a beta-site amyloid precursor protein-cleaving enzyme 1 inhibitor in nonhuman primates. J Pharmacol Exp Ther 328:131–140.

    Article  PubMed  CAS  Google Scholar 

  53. Bush AI (2008) Drug development based on the metals hypothesis of Alzheimer’s disease. J Alzheimers Dis 15:223–240.

    PubMed  CAS  Google Scholar 

  54. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Bamham KT, Volitakis I, Fraser FW, Kim Y, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676.

    Article  PubMed  CAS  Google Scholar 

  55. Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Harrison J, Masters CL, Targum S, Bush AI, Murdoch R, Wilson J, Ritchie CW; BT2-201-EURO study group (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 7:779–786.

    Article  PubMed  CAS  Google Scholar 

  56. Kadir A, Andreasen N, Almkvist O, Wall A, Forsberg A, Engler H, Hagman G, Larksater M, Winblad B, Zetterberg H, Blennow K, Långström B, Nordberg A (2008) Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer’s disease. Ann Neurol 63:621–631.

    Article  PubMed  CAS  Google Scholar 

  57. Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC, Eisner L, Kirby L, Rovira MB, Forette F, Orgogozo JM (2005) AN1792(QS-21)-201 Study Team: Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64:1553–1562.

    Article  PubMed  CAS  Google Scholar 

  58. Fleisher AS, Raman R, Siemers ER, Becerra L, Clark CM, Dean RA, Farlow MR, Galvin JE, Peskind ER, Quinn JF, Sherzai A, Sowell BB, Aisen PS, Thal LJ (2008) Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease. Arch Neurol 65:1031–1038.

    Article  PubMed  Google Scholar 

  59. Bateman RJ, Siemers ER, Mawuenyega KG, Wen G, Browning KR, Sigurdson WC, Yarasheski KE, Friedrich SW, Demattos RB, May PC, Paul SM, Holtzman DM (2009) A gamma-secretase inhibitor decreases amyloid-beta production in the central nervous system. Ann Neurol 66:48–54.

    Article  PubMed  CAS  Google Scholar 

  60. Hansson O, Zetterberg H, Buchhave P, Andreasson U, Londos E, Minthon L, Blennow K (2007) Prediction of Alzheimer’s disease using the CSF Aβ42/Aβ40 ratio in patients with mild cognitive impairment. Dement Geriatr Cogn Disord 23:316–320.

    Article  PubMed  CAS  Google Scholar 

  61. Portelius E, Westman-Brinkmalm A, Zetterberg H, Blennow K (2006) Determination of β-amyloid peptide signatures in cerebrospinal fluid using immunoprecipitationmass spectrometry. J Proteome Res 5:1010–1016.

    Article  PubMed  CAS  Google Scholar 

  62. Portelius E, Dean RA, Gustavsson MK, Andreasson U, Zetterberg H, Siemers E, Blennow K (2010) A novel Abeta isoform pattern in CSF reflects gammas-ecretase inhibition in Alzheimer disease. Alzheimers Res Ther 2:7.

    Article  PubMed  Google Scholar 

  63. Hampel H, Shen Y (2009) Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a biological candidate marker of Alzheimer’s disease. Scand J Clin Lab Invest 69:8–12.

    Article  PubMed  CAS  Google Scholar 

  64. Zetterberg H (2009) Update on amyloid-beta homeostasis markers for sporadic Alzheimer’s disease. Scand J Clin Lab Invest 69:18–21.

    Article  PubMed  CAS  Google Scholar 

  65. Fukumoto H, Tokuda T, Kasai T, Ishigami N, Hidaka H, Kondo M, Allsop D, Nakagawa M (2010) High-molecular-weight {beta}-amyloid oligomers are elevated in cerebrospinal fluid of Alzheimer patients. FASEB J 24:2716–2726.

    Article  PubMed  CAS  Google Scholar 

  66. Hampel H, Ewers M, Bürger K, Annas P, Mörtberg A, Bogstedt A, Frölich L, Schröder J, Schönknecht P, Riepe MW, Kraft I, Gasser T, Leyhe T, Möller HJ, Kurz A, Basun H (2009). Lithium trial in Alzheimer’s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J Clin Psychiatry 70:922–931.

    Article  PubMed  CAS  Google Scholar 

  67. Samgard K, Zetterberg H, Blennow K, Hansson O, Minthon L, Londos E (2010) Cerebrospinal fluid total tau as a marker of Alzheimer’s disease intensity. Int J Geriatr Psychiatry 25:403–410.

    Article  PubMed  Google Scholar 

  68. Zetterberg H, Hietala MA, Jonsson M, Andreasen N, Styrud E, Karlsson I, Edman A, Popa C, Rasulzada A, Wahlund LO, Mehta PD, Rosengren L, Blennow K, Wallin A (2006) Neurochemical aftermath of amateur boxing. Arch Neurol 63:1277–1280.

    Article  PubMed  Google Scholar 

  69. Tarawneh R, Lee JM, Ladenson JH, Morris JC, Holtzman DM (2012) CSF VILIP-1 predicts rates of cognitive decline in early Alzheimer disease. Neurology 78:709–719.

    Article  PubMed  CAS  Google Scholar 

  70. Sjogren M, Blomberg M, Jonsson M, Wahlund LO, Edman A, Lind K, Rosengren L. Blennow K, Wallin A (2001) Neurofilament protein in cerebrospinal fluid: A marker of white matter changes. J Neurosci Res 66:510–516.

    Article  PubMed  CAS  Google Scholar 

  71. Tarkowski E, Issa R, Sjogren M, Wallin A, Blennow K, Tarkowski A, Kumar P (2002) Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer’s disease and vascular dementia. Neurobiol Aging 23:237–243.

    Article  PubMed  CAS  Google Scholar 

  72. Zetterberg H, Andreasen N, Blennow K (2004) Increased cerebrospinal fluid levels of transforming growth factor-betal in Alzheimer’s disease. Neurosci Lett 367:194–196.

    Article  PubMed  CAS  Google Scholar 

  73. Shen Y, He P, Zhong Z, McAllister C, Lindholm K (2006) Distinct destructive signal pathways of neuronal death in Alzheimer’s disease. Trends Mol Med 12:574–579.

    Article  PubMed  CAS  Google Scholar 

  74. Jiang H, Hampel H, Prvulovic D, Wallin A, Blennow K, Li R, Shen Y (2011) Elevated CSF levels of TACE activity and soluble TNF receptors in subjects with mild cognitive impairment and patients with Alzheimer’s disease. Mol Neurodegener 6:69.

    Article  PubMed  CAS  Google Scholar 

  75. Hampel H, Teipel SJ, Padberg F, Haslinger A, Riemenschneider M, Schwarz MJ, Kötter HU, Scheloske M, Buch K, Stübner S, Dukoff R, Lasser R, Müller N, Sunderland T, Rapoport SI, Möller HJ (1999) Discriminant power of combined cerebrospinal fluid tau protein and of the soluble interleukin-6 receptor complex in the diagnosis of Alzheimer’s disease. Brain Res 823:104–112.

    Article  PubMed  CAS  Google Scholar 

  76. Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ, Mintun MA, Peskind ER, Li G, Galasko DR, Clark CM, Quinn JF, D’Angelo G, Malone JP, Townsend RR, Morris JC, Fagan AM, Holtzman DM (2010) YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry 68:903–912.

    Article  PubMed  CAS  Google Scholar 

  77. Perrin RJ, Craig-Schapiro R, Malone JP, Shah AR, Gilmore P, Davis AE, Roe CM, Peskind ER, Li G, Galasko DR, Clark CM, Quinn JF, Kaye JA, Morris JC, Holtzman DM, Townsend RR, Fagan AM (2011) Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer’s disease. PLoS One 6:el6032.

    Google Scholar 

  78. Craig-Schapiro R, Kuhn M, Xiong C, Pickering EH, Liu J, Misko TP, Perrin RJ, Bales KR, Soares H, Fagan AM, Holtzman DM (2011) Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer’s disease diagnosis and prognosis. PLoS One 6:el8850.

    Article  Google Scholar 

  79. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman LF, Galasko DR, Jutel M, Karydas A, Kaye JA, Leszek J, Miller BL, Minthon L, Quinn JF, Rabinovici GD, Robinson WH, Sabbagh MN, So YT, Sparks DL, Tabaton M, Tinklenberg J, Yesavage JA, Tibshirani R, Wyss-Coray T (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362.

    Article  PubMed  CAS  Google Scholar 

  80. Hye A, Lynham S, Thambisetty M, Causevic M, Campbell J, Byers HL, Hooper C, Rijsdijk F, Tabrizi SJ, Banner S, Shaw CE, Foy C, Poppe M, Archer N, Hamilton G, Powell J, Brown RG, Sham P, Ward M, Lovestone S (2006) Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 129:3042–3050.

    Article  PubMed  CAS  Google Scholar 

  81. O’Bryant SE, Xiao G, Barber R, Reisch J, Doody R, Fairchild T, Adams P, Waring S, Diaz-Arrastia R. Texas Alzheimer’s Research Consortium (2010) A serum protein-based algorithm for the detection of Alzheimer disease. Arch Neurol 67:1077–1081.

    Article  PubMed  Google Scholar 

  82. O’Bryant SE, Xiao G, Barber R, Reisch J, Hall J, Cullum CM, Doody R, Fairchild T, Adams P, Wilhelmsen K, Diaz-Arrastia R; Texas Alzheimer’s Research and Care Consortium (2011) A blood-based algorithm for the detection of Alzheimer’s disease. Dement Geriatr Cogn Disord 32:55–62.

    Article  PubMed  Google Scholar 

  83. Szekely CA, Zandi PP (2010) Non-steroidal anti-infl ammatory drugs and Alzheimer’s disease: the epidemiological evidence. CNS Neurol Disord Drug Targets 9:132–139.

    Article  PubMed  CAS  Google Scholar 

  84. Montine TJ, Quinn J, Kaye J, Morrow JD (2007) F(2)-isoprostanes as biomarkers of late-onset Alzheimer’s disease. J Mol Neurosci 33:114–119.

    Article  PubMed  CAS  Google Scholar 

  85. Blennow K, Wallin A, Fredman P, Karlsson I, Gottfries CG, Svennerholm L (1990) Blood-brain barrier disturbance in patients with Alzheimer’s disease is related to vascular factors. Acta Neurol Scand 81:323–326.

    Article  PubMed  CAS  Google Scholar 

  86. Buerger K, Ernst A, Ewers M, Uspenskaya O, Omerovic M, Morgenthaler NG, Knauer K, Bergmann A, Hampel H (2009) Blood-based microcirculation markers in Alzheimer’s disease-diagnostic value of midregional pro-atrial natriuretic peptide/C-terminal endothelin-1 precursor fragment ratio. Biol Psychiatry 65:979–984.

    Article  PubMed  CAS  Google Scholar 

  87. Buerger K, Uspenskaya O, Hartmann O, Hansson O, Minthon L, Blennow K, Moeller HJ, Teipel SJ, Ernst A, Bergmann A, Hampel H (2011) Prediction of Alzheimer’s disease using midregional proadrenomedullin and midregional proatrial natriuretic peptide: a retrospective analysis of 134 patients with mild cognitive impairment. J Clin Psychiatry 72:556–563.

    Article  PubMed  CAS  Google Scholar 

  88. Solomon A, Kivipelto M, Soininen H (2012) Prevention of Alzheimer’s Disease: Moving Backward through the Lifespan. J Alzheimers Dis. DOI: 10.3233/JAD-2012-129021.

  89. Selkoe DJ (2012) Preventing Alzheimer’s disease. Science 337:1488–1492.

    Article  PubMed  CAS  Google Scholar 

  90. Tanne JH (2012) US scientists discuss early detection and treatment of Alzheimer’s disease. BMJ 344:el068.

    Google Scholar 

  91. Wadman M (2012) US government sets out Alzheimer’s plan. Nature 485:426–427.

    Article  PubMed  CAS  Google Scholar 

  92. Miller G (2012) Alzheimer’s research. Stopping Alzheimer’s before it starts. Science 337:790–792.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Hampel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hampel, H., Lista, S. Use of biomarkers and imaging to assess pathophysiology, mechanisms of action and target engagement. J Nutr Health Aging 17, 54–63 (2013). https://doi.org/10.1007/s12603-013-0003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-013-0003-1

Key words

Navigation