The journal of nutrition, health & aging

, Volume 16, Issue 1, pp 67–77 | Cite as

How to assess functional status: A new muscle quality index

  • S. Barbat-Artigas
  • Y. Rolland
  • M. Zamboni
  • Mylène Aubertin-Leheudre
JNHA: Clinical Trials and Aging


Aging is associated with decreases in muscle mass, muscle strength and muscle power, with muscle strength declining at a higher rate than muscle mass, but at a lower rate than muscle power. This progressive mismatch suggests a deterioration of muscle “quality” that may lead to functional incapacities. Although it may be difficult to synthesize the concept of muscle quality, the aim of the present paper was to propose a clinical definition of muscle quality in regard to the functional status. Accordingly, the muscle strength or muscle power per unit of muscle mass ratios appear to be clinically relevant markers of muscle quality. Several mechanisms susceptible to influence these ratios have been described, among which age, gender, sex hormones, obesity, physical activity and fibrosis. Various methods to assess muscle quality in both the clinical and research fields have also been listed, with a particular interest for the tests used to measure muscle power. Finally, we proposed a clinical screening tool to detect individuals at risk of functional incapacities. Briefly, the muscle quality score is based on handgrip strength assessment by hand dynamometer, muscle mass measurement by bioelectrical analysis, and leg muscle power estimation using a chair stand test.

Key words

Muscle mass muscle strength muscle power aging functional capacity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosenberg, I.H., Summary comments. Am J Clin Nutr, 1989. 50(5): p. 1231–1233.Google Scholar
  2. 2.
    Muscaritoli, M., S.D. Anker, J. Argiles, Z. Aversa, J.M. Bauer, G. Biolo, Y. Boirie, I. Bosaeus, T. Cederholm, P. Costelli, K.C. Fearon, A. Laviano, M. Maggio, F. Rossi Fanelli, S.M. Schneider, A. Schols, and C.C. Sieber, Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr, 2010. 29(2): p. 154–159.PubMedCrossRefGoogle Scholar
  3. 3.
    Rolland, Y., G.A. Van Kan, S. Gillette-Guyonnet, and B. Vellas, Cachexia versus sarcopenia. Curr Opin Clin Nutr Metab Care, 2011. 14(1): p. 15–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Cruz-Jentoft, A.J., J.P. Baeyens, J.M. Bauer, Y. Boirie, T. Cederholm, F. Landi, F.C. Martin, J.-P. Michel, Y. Rolland, S.M. Schneider, E. Topinkova, M. Vandewoude, and M. Zamboni, Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing, 2010. 1(12): p. 412–423.CrossRefGoogle Scholar
  5. 5.
    Hughes, V.A., W.R. Frontera, M. Wood, W.J. Evans, G.E. Dallal, R. Roubenoff, and M.A.F. Singh, Longitudinal Muscle Strength Changes in Older Adults. J Gerontol A Biol Sci Med Sci, 2001. 56(5): p. B209–B217.PubMedCrossRefGoogle Scholar
  6. 6.
    Janssen, I., S.B. Heymsfield, and R. Ross, Low Relative Skeletal Muscle Mass (Sarcopenia) in Older Persons Is Associated with Functional Impairment and Physical Disability. J Am Geriatr Soc, 2002. 50(5): p. 889–896.PubMedCrossRefGoogle Scholar
  7. 7.
    Barbat-Artigas, S., S. Dupontgand, A. Fex, A.D. Karelis, and M. Aubertin-Leheudre, Relationship between dynapenia and cardio-repiratory functions in healthy postmenopausal women: novel clinical criteria. Menopause, 2010. 18(4): p. 000–000.Google Scholar
  8. 8.
    Visser, M., A.B. Newman, M.C. Nevitt, S.B. Kritchevsky, E.B. Stamm, B.H. Goodpaster, and T.B. Harris, Reexamining the Sarcopenia Hypothesis: Muscle Mass versus Muscle Strength. Ann N Y Acad Sci, 2000. 904: p. 456–461.PubMedCrossRefGoogle Scholar
  9. 9.
    Newman, A.B., V. Kupelian, M. Visser, E.M. Simonsick, B.H. Goodpaster, S.B. Kritchevsky, F.A. Tylavsky, S.M. Rubin, and T.B. Harris, Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci, 2006. 61(1): p. 72–77.PubMedCrossRefGoogle Scholar
  10. 10.
    Clark, B.C. and T.M. Manini, Sarcopenia ≠ Dynapenia. J Gerontol A Biol Sci Med Sci, 2008. 63(8): p. 829–834.PubMedCrossRefGoogle Scholar
  11. 11.
    Cuoco, A., D.M. Callahan, S. Sayers, W.R. Frontera, J. Bean, and R.A. Fielding, Impact of muscle power and force on gait speed in disabled older men and women. J Gerontol A Biol Sci Med Sci, 2004. 59(11): p. 1200–1206.PubMedCrossRefGoogle Scholar
  12. 12.
    Orr, R., N.J. de Vos, N.A. Singh, D.A. Ross, T.M. Stavrinos, and M.A. Fiatarone-Singh, Power training improves balance in healthy older adults. J Gerontol A Biol Sci Med Sci, 2006. 61(1): p. 78–85.PubMedCrossRefGoogle Scholar
  13. 13.
    Foldvari, M., M. Clark, L.C. Laviolette, M.A. Bernstein, D. Kaliton, C. Castaneda, C.T. Pu, J.M. Hausdorff, R.A. Fielding, and M.A. Singh, Association of muscle power with functional status in community-dwelling elderly women. J Gerontol A Biol Sci Med Sci, 2000. 55(4): p. M192–M199.PubMedCrossRefGoogle Scholar
  14. 14.
    Bean, J.F., D.K. Kiely, S. Herman, S.G. Leveille, K. Mizer, W.R. Frontera, and R.A. Fielding, The relationship between leg power and physical performance in mobilitylimited older people. J Am Geriatr Soc, 2002. 50(3): p. 461–467.PubMedCrossRefGoogle Scholar
  15. 15.
    Cormie, P., M.R. McGuigan, and R.U. Newton, Developing maximal neuromuscular power: Part 1 — biological basis of maximal power production. Sports Med, 2011. 41(1): p. 17–38.PubMedCrossRefGoogle Scholar
  16. 16.
    Lynch, N.A., E.J. Metter, R.S. Lindle, J.L. Fozard, J.D. Tobin, T.A. Roy, J.L. Fleg, and B.F. Hurley, Muscle quality. I. Age-associated differences between arm and leg muscle groups. J Appl Physiol, 1999. 86(1): p. 188–194.PubMedGoogle Scholar
  17. 17.
    Tracy, B.L., F.M. Ivey, D. Hurlbut, G.F. Martel, J.T. Lemmer, E.L. Siegel, E.J. Metter, J.L. Fozard, J.L. Fleg, and B.F. Hurley, Muscle quality. II. Effects Of strength training in 65- to 75-yr-old men and women. J Appl Physiol, 1999. 86(1): p. 195–201.PubMedGoogle Scholar
  18. 18.
    Rolland, Y., V. Lauwers-Cances, M. Pahor, J. Fillaux, H. Grandjean, and B. Vellas, Muscle strength in obese elderly women: effect of recreational physical activity in a cross-sectional study. Am J Clin Nutr, 2004. 79(4): p. 552–557.PubMedGoogle Scholar
  19. 19.
    Wolfe, R.R., The underappreciated role of muscle in health and disease. Am J Clin Nutr, 2006. 84(3): p. 475–482.PubMedGoogle Scholar
  20. 20.
    Reed, R.L., L. Pearlmutter, K. Yochum, K.E. Meredith, and A.D. Mooradian, The relationship between muscle mass and muscle strength in the elderly. J Am Geriatr Soc, 1991. 39(6): p. 555–561.PubMedGoogle Scholar
  21. 21.
    Mitsionis, G., E.E. Pakos, K.S. Stafilas, N. Paschos, T. Papakostas, and A.E. Beris, Normative data on hand grip strength in a Greek adult population. Int Orthop, 2009. 33(3): p. 713–717.PubMedCrossRefGoogle Scholar
  22. 22.
    Ploutz-Snyder, L.L., T. Manini, R.J. Ploutz-Snyder, and D.A. Wolf, Functionally relevant thresholds of quadriceps femoris strength. J Gerontol A Biol Sci Med Sci, 2002. 57(4): p. B144–B152.PubMedCrossRefGoogle Scholar
  23. 23.
    Metter, E.J., N. Lynch, R. Conwit, R. Lindle, J. Tobin, and B. Hurley, Muscle quality and age: cross-sectional and longitudinal comparisons. J Gerontol A Biol Sci Med Sci, 1999. 54(5): p. B207–B218.PubMedCrossRefGoogle Scholar
  24. 24.
    Overend, T.J., D.A. Cunningham, J.F. Kramer, M.S. Lefcoe, and D.H. Paterson, Knee extensor and knee flexor strength: cross-sectional area ratios in young and elderly men. J Gerontol, 1992. 47(6): p. M204–M210.PubMedGoogle Scholar
  25. 25.
    Lindle, R.S., E.J. Metter, N.A. Lynch, J.L. Fleg, J.L. Fozard, J. Tobin, T.A. Roy, and B.F. Hurley, Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J Appl Physiol, 1997. 83(5): p. 1581–1587.PubMedGoogle Scholar
  26. 26.
    Young, A., M. Stokes, and M. Crowe, The size and strength of the quadriceps muscles of old and young men. Clin Physiol, 1985. 5(2): p. 145–154.PubMedCrossRefGoogle Scholar
  27. 27.
    Alway, S.E., A.R. Coggan, M.S. Sproul, A.M. Abduljalil, and P.M. Robitaille, Muscle torque in young and older untrained and endurance-trained men. J Gerontol A Biol Sci Med Sci, 1996. 51(3): p. B195–B201.PubMedCrossRefGoogle Scholar
  28. 28.
    Hortobágyi, T., D. Tunnel, J. Moody, S. Beam, and P. DeVita, Low- or High-Intensity Strength Training Partially Restores Impaired Quadriceps Force Accuracy and Steadiness in Aged Adults. J Gerontol A Biol Sci Med Sci, 2001. 56(1): p. B38–B47.PubMedCrossRefGoogle Scholar
  29. 29.
    Frontera, W.R., V.A. Hughes, K.J. Lutz, and W.J. Evans, A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. J Appl Physiol, 1991. 71(2): p. 644–650.PubMedGoogle Scholar
  30. 30.
    Grimby, G., B. Danneskiold-Samsoe, K. Hvid, and B. Saltin, Morphology and enzymatic capacity in arm and leg muscles in 78–81 year old men and women. Acta Physiol Scand, 1982. 115(1): p. 125–134.PubMedCrossRefGoogle Scholar
  31. 31.
    Tomonaga, M., Histochemical and ultrastructural changes in senile human skeletal muscle. J Am Geriatr Soc, 1977. 25(3): p. 125–131.PubMedGoogle Scholar
  32. 32.
    Kallman, D.A., C.C. Plato, and J.D. Tobin, The role of muscle loss in the age-related decline of grip strength: cross-sectional and longitudinal perspectives. J Gerontol, 1990. 45(3): p. M82–M88.PubMedGoogle Scholar
  33. 33.
    Campbell, M.J., A.J. McComas, and F. Petito, Physiological changes in ageing muscles. J Neurol Neurosurg Psychiatry, 1973. 36(2): p. 174–182.PubMedCrossRefGoogle Scholar
  34. 34.
    Brown, W.F., A method for estimating the number of motor units in thenar muscles and the changes in motor unit count with ageing. J Neurol Neurosurg Psychiatry, 1972. 35(6): p. 845–852.PubMedCrossRefGoogle Scholar
  35. 35.
    Young, A., M. Stokes, and M. Crowe, Size and strength of the quadriceps muscles of old and young women*. Eur J Clin Invest, 1984. 14(4): p. 282–287.PubMedCrossRefGoogle Scholar
  36. 36.
    Castro, M.J., D.J. McCann, J.D. Shaffrath, and W.C. Adams, Peak torque per unit cross-sectional area differs between strength-trained and untrained young adults. Med Sci Sports Exerc, 1995. 27(3): p. 397–403.PubMedGoogle Scholar
  37. 37.
    Cureton, K.J., M.A. Collins, D.W. Hill, and F.M. McElhannon, Jr., Muscle hypertrophy in men and women. Med Sci Sports Exerc, 1988. 20(4): p. 338–344.PubMedCrossRefGoogle Scholar
  38. 38.
    Welle, S., S. Totterman, and C. Thornton, Effect of Age on Muscle Hypertrophy Induced by Resistance Training. J Gerontol A Biol Sci Med Sci, 1996. 51(6): p. M270–M275.PubMedCrossRefGoogle Scholar
  39. 39.
    Ivey, F.M., B.L. Tracy, J.T. Lemmer, M. NessAiver, E.J. Metter, J.L. Fozard, and B.F. Hurley, Effects of strength training and detraining on muscle quality: age and gender comparisons. J Gerontol A Biol Sci Med Sci, 2000. 55(3): p. B152–B158.PubMedCrossRefGoogle Scholar
  40. 40.
    Barbat-Artigas, S., M.-E. Filion, S. Dupontgand, A.D. Karelis, and M. Aubertin- Leheudre, Effects of tai chi training in dynapenic and nondynapenic postmenopausal women. Menopause, 2011. 18(9): p. 000–000.CrossRefGoogle Scholar
  41. 41.
    Kawakami, Y., T. Abe, and T. Fukunaga, Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol, 1993. 74(6): p. 2740–2744.PubMedGoogle Scholar
  42. 42.
    Kawakami, Y., T. Abe, S.Y. Kuno, and T. Fukunaga, Training-induced changes in muscle architecture and specific tension. Eur J Appl Physiol Occup Physiol, 1995. 72(1–2): p. 37–43.PubMedCrossRefGoogle Scholar
  43. 43.
    Young, A., M. Stokes, J.M. Round, and R.H. Edwards, The effect of high-resistance training on the strength and cross-sectional area of the human quadriceps. Eur J Clin Invest, 1983. 13(5): p. 411–417.PubMedCrossRefGoogle Scholar
  44. 44.
    Hakkinen, K., M. Kallinen, M. Izquierdo, K. Jokelainen, H. Lassila, E. Malkia, W.J. Kraemer, R.U. Newton, and M. Alen, Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol, 1998. 84(4): p. 1341–1349.PubMedGoogle Scholar
  45. 45.
    De Bruijn, E.R.A., R.B. Mars, and W. Hulstijn, It wasn’t me...or was it? How false feedback affects performance, in Errors, conflicts, and the brain. Current opinions on performance monitoring, M. Ullsperger and M. Falkenstein, Editors. 2004, MPI for Human Cognitive and Brain Sciences: Leipzig. p. 118–124.Google Scholar
  46. 46.
    Jacobsen, D.E., M.M. Samson, S. Kezic, and H.J. Verhaar, Postmenopausal HRT and tibolone in relation to muscle strength and body composition. Maturitas, 2007. 58(1): p. 7–18.PubMedCrossRefGoogle Scholar
  47. 47.
    Kenny, A.M., A. Kleppinger, K. Annis, M. Rathier, B. Browner, J.O. Judge, and D. McGee, Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels, low bone mass, and physical frailty. J Am Geriatr Soc, 2010. 58(6): p. 1134–1143.PubMedCrossRefGoogle Scholar
  48. 48.
    Atkinson, R.A., U. Srinivas-Shankar, S.A. Roberts, M.J. Connolly, J.E. Adams, J.A. Oldham, F.C. Wu, O.R. Seynnes, C.E. Stewart, C.N. Maganaris, and M.V. Narici, Effects of testosterone on skeletal muscle architecture in intermediate-frail and frail elderly men. J Gerontol A Biol Sci Med Sci, 2010. 65(11): p. 1215–1219.PubMedCrossRefGoogle Scholar
  49. 49.
    Srinivas-Shankar, U., S.A. Roberts, M.J. Connolly, M.D. O’Connell, J.E. Adams, J.A. Oldham, and F.C. Wu, Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab, 2010. 95(2): p. 639–650.PubMedCrossRefGoogle Scholar
  50. 50.
    O’Connell, M.D., A. Tajar, S.A. Roberts, and F.C. Wu, Do androgens play any role in the physical frailty of ageing men? Int J Androl, 2010: p. In press.Google Scholar
  51. 51.
    Blackman, M.R., J.D. Sorkin, T. Munzer, M.F. Bellantoni, J. Busby-Whitehead, T.E. Stevens, J. Jayme, K.G. O’Connor, C. Christmas, J.D. Tobin, K.J. Stewart, E. Cottrell, C. St Clair, K.M. Pabst, and S.M. Harman, Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. JAMA, 2002. 288(18): p. 2282–2292.PubMedCrossRefGoogle Scholar
  52. 52.
    Goodpaster, B.H., C.L. Carlson, M. Visser, D.E. Kelley, A. Scherzinger, T.B. Harris, E. Stamm, and A.B. Newman, Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J Appl Physiol, 2001. 90(6): p. 2157–2165.PubMedGoogle Scholar
  53. 53.
    Serrano, A.L. and P. Munoz-Canoves, Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res, 2010. 316(18): p. 3050–3058.PubMedCrossRefGoogle Scholar
  54. 54.
    Haus, J.M., J.A. Carrithers, S.W. Trappe, and T.A. Trappe, Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. J Appl Physiol, 2007. 103(6): p. 2068–2076.PubMedCrossRefGoogle Scholar
  55. 55.
    Raj, I.S., S.R. Bird, and A.J. Shield, Aging and the force-velocity relationship of muscles. Exp Gerontol, 2010. 45(2): p. 81–90.PubMedCrossRefGoogle Scholar
  56. 56.
    Valour, D., J. Ochala, Y. Ballay, and M. Pousson, The influence of ageing on the force-velocity-power characteristics of human elbow flexor muscles. Exp Gerontol, 2003. 38(4): p. 387–395.PubMedCrossRefGoogle Scholar
  57. 57.
    Toji, H. and M. Kaneko, Effects of aging on force, velocity, and power in the elbow flexors of males. J Physiol Anthropol, 2007. 26(6): p. 587–592.PubMedCrossRefGoogle Scholar
  58. 58.
    Akima, H., Y. Kano, Y. Enomoto, M. Ishizu, M. Okada, Y. Oishi, S. Katsuta, and S. Kuno, Muscle function in 164 men and women aged 20—84 yr. Med Sci Sports Exerc, 2001. 33(2): p. 220–226.PubMedGoogle Scholar
  59. 59.
    Narici, M.V., C. Maganaris, and N. Reeves, Myotendinous alterations and effects of resistive loading in old age. Scand J Med Sci Sports, 2005. 15(6): p. 392–401.PubMedCrossRefGoogle Scholar
  60. 60.
    Thom, J.M., C.I. Morse, K.M. Birch, and M.V. Narici, Triceps surae muscle power, volume, and quality in older versus younger healthy men. J Gerontol A Biol Sci Med Sci, 2005. 60(9): p. 1111–1117.PubMedCrossRefGoogle Scholar
  61. 61.
    Thom, J.M., C.I. Morse, K.M. Birch, and M.V. Narici, Influence of muscle architecture on the torque and power-velocity characteristics of young and elderly men. Eur J Appl Physiol, 2007. 100(5): p. 613–619.PubMedCrossRefGoogle Scholar
  62. 62.
    D’Antona, G., M.A. Pellegrino, C.N. Carlizzi, and R. Bottinelli, Deterioration of contractile properties of muscle fibres in elderly subjects is modulated by the level of physical activity. Eur J Appl Physiol, 2007. 100(5): p. 603–611.PubMedCrossRefGoogle Scholar
  63. 63.
    Cormie, P., M.R. McGuigan, and R.U. Newton, Developing maximal neuromuscular power: part 2 — training considerations for improving maximal power production. Sports Med, 2011. 41(2): p. 125–146.PubMedCrossRefGoogle Scholar
  64. 64.
    Bassey, E.J., M.A. Fiatarone, E.F. O’Neill, M. Kelly, W.J. Evans, and L.A. Lipsitz, Leg extensor power and functional performance in very old men and women. Clin Sci (Lond), 1992. 82(3): p. 321–327.Google Scholar
  65. 65.
    Skelton, D.A., C.A. Greig, J.M. Davies, and A. Young, Strength, power and related functional ability of healthy people aged 65—89 years. Age Ageing, 1994. 23(5): p. 371–377.PubMedCrossRefGoogle Scholar
  66. 66.
    Puthoff, M.L., K.F. Janz, and D. Nielson, The relationship between lower extremity strength and power to everday walking behaviors in older adults with functional limitations. J Geriatr Phys Ther, 2008. 31(1): p. 24–31.PubMedCrossRefGoogle Scholar
  67. 67.
    Bean, J.F., S.G. Leveille, D.K. Kiely, S. Bandinelli, J.M. Guralnik, and L. Ferrucci, A comparison of leg power and leg strength within the InCHIANTI study: which influences mobility more? J Gerontol A Biol Sci Med Sci, 2003. 58(8): p. 728–733.PubMedCrossRefGoogle Scholar
  68. 68.
    Heymsfield, S.B., C. Arteaga, C. McManus, J. Smith, and S. Moffitt, Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method. Am J Clin Nutr, 1983. 37(3): p. 478–494.PubMedGoogle Scholar
  69. 69.
    Rantanen, T., P. Era, and E. Heikkinen, Maximal isometric strength and mobility among 75-year-old men and women. Age Ageing, 1994. 23(2): p. 132–137.PubMedCrossRefGoogle Scholar
  70. 70.
    Hortobagyi, T., D. Zheng, M. Weidner, N.J. Lambert, S. Westbrook, and J.A. Houmard, The influence of aging on muscle strength and muscle fiber characteristics with special reference to eccentric strength. J Gerontol A Biol Sci Med Sci, 1995. 50(6): p. B399–B406.PubMedCrossRefGoogle Scholar
  71. 71.
    Porter, M.M., A. Myint, J.F. Kramer, and A.A. Vandervoort, Concentric and eccentric knee extension strength in older and younger men and women. Can J Appl Physiol, 1995. 20(4): p. 429–439.PubMedCrossRefGoogle Scholar
  72. 72.
    Sargeant, A.J., E. Hoinville, and A. Young, Maximum leg force and power output during short-term dynamic exercise. J Appl Physiol, 1981. 51(5): p. 1175–1182.PubMedGoogle Scholar
  73. 73.
    Slade, J.M., T.A. Miszko, J.H. Laity, S.K. Agrawal, and M.E. Cress, Anaerobic power and physical function in strength-trained and non-strength-trained older adults. J Gerontol A Biol Sci Med Sci, 2002. 57(3): p. M168–M172.PubMedCrossRefGoogle Scholar
  74. 74.
    Chia, M. and J.M. Lim, Concurrent validity of power output derived from the nonmotorised treadmill test in sedentary adults. Ann Acad Med Singapore, 2008. 37(4): p. 279–285.PubMedGoogle Scholar
  75. 75.
    Margaria, R., P. Aghemo, and E. Rovelli, Measurement of muscular power (anaerobic) in man. J Appl Physiol, 1966. 21(5): p. 1662–1664.PubMedGoogle Scholar
  76. 76.
    Lindemann, U., H. Claus, M. Stuber, P. Augat, R. Muche, T. Nikolaus, and C. Becker, Measuring power during the sit-to-stand transfer. Eur J Appl Physiol, 2003. 89(5): p. 466–470.PubMedCrossRefGoogle Scholar
  77. 77.
    Takai, Y., M. Ohta, R. Akagi, H. Kanehisa, Y. Kawakami, and T. Fukunaga, Sit-tostand test to evaluate knee extensor muscle size and strength in the elderly: a novel approach. J Physiol Anthropol, 2009. 28(3): p. 123–128.PubMedCrossRefGoogle Scholar
  78. 78.
    Smith, W.N., G. Del Rossi, J.B. Adams, K.Z. Abderlarahman, S.A. Asfour, B.A. Roos, and J.F. Signorile, Simple equations to predict concentric lower-body muscle power in older adults using the 30-second chair-rise test: a pilot study. Clin Interv Aging, 2010. 5(5): p. 173–180.PubMedGoogle Scholar
  79. 79.
    Fielding, R.A., N.K. LeBrasseur, A. Cuoco, J. Bean, K. Mizer, and M.A. Fiatarone Singh, High-velocity resistance training increases skeletal muscle peak power in older women. J Am Geriatr Soc, 2002. 50(4): p. 655–662.PubMedCrossRefGoogle Scholar
  80. 80.
    Jandacka, D. and F. Vaverka, A regression model to determine load for maximum power output. Sports Biomech, 2008. 7(3): p. 361–371.PubMedCrossRefGoogle Scholar
  81. 81.
    Davies, C.T., J. Wemyss-Holden, and K. Young, Measurement of short term power output: comparison between cycling and jumping. Ergonomics, 1984. 27(3): p. 285–296.PubMedCrossRefGoogle Scholar
  82. 82.
    Bosco, C., P. Luhtanen, and P.V. Komi, A simple method for measurement of mechanical power in jumping. Eur J Appl Physiol Occup Physiol, 1983. 50(2): p. 273–282.PubMedCrossRefGoogle Scholar
  83. 83.
    Bassey, E.J. and A.H. Short, A new method for measuring power output in a single leg extension: feasibility, reliability and validity. Eur J Appl Physiol Occup Physiol, 1990. 60(5): p. 385–390.PubMedCrossRefGoogle Scholar
  84. 84.
    Shulman, R.G. and D.L. Rothman, The “glycogen shunt” in exercising muscle: A role for glycogen in muscle energetics and fatigue. Proc Natl Acad Sci U S A, 2001. 98(2): p. 457–461.PubMedCrossRefGoogle Scholar
  85. 85.
    Rantanen, T. and J. Avela, Leg extension power and walking speed in very old people living independently. J Gerontol A Biol Sci Med Sci, 1997. 52(4): p. M225–M231.PubMedCrossRefGoogle Scholar
  86. 86.
    Barry, B.K. and R.G. Carson, The consequences of resistance training for movement control in older adults. J Gerontol A Biol Sci Med Sci, 2004. 59(7): p. 730–754.PubMedCrossRefGoogle Scholar

Copyright information

© Serdi and Springer Verlag France 2012

Authors and Affiliations

  • S. Barbat-Artigas
    • 1
    • 2
  • Y. Rolland
    • 3
  • M. Zamboni
    • 4
  • Mylène Aubertin-Leheudre
    • 1
    • 2
    • 5
    • 6
  1. 1.Groupe de Recherche en Activité Physique AdaptéeUniversity of Quebec at MontrealMontrealCanada
  2. 2.Department of KinanthropologyUniversity of Quebec at MontrealMontrealCanada
  3. 3.Gérontopôle de ToulouseHospital La Grave-Casselardit, INSERM 1027ToulouseFrance
  4. 4.Department of Biomedical and Surgical Sciences, Division of GeriatricsUniversity of VeronaVeronaItaly
  5. 5.Research Centre of the Montreal Geriatric University InstituteMontrealCanada
  6. 6.Department of kinanthropologyUniversity of Quebec at MontrealMontrealCanada

Personalised recommendations