Skip to main content
Log in

The validity of biomarkers as surrogate endpoints in Alzheimer’s disease by means of the Quantitative Surrogate Validation Level of Evidence Scheme (QSVLES)

  • The Validity of Biomarkers as Surrogate Endpoints in Alzheimer’s Disease
  • Published:
JNHA - The Journal of Nutrition, Health and Aging

Abstract

Objective

To evaluate the validity of biomarkers that are currently being proposed as potential surrogate endpoints in AD clinical trials with the aid of the “Quantitative Surrogate Validation Level of Evidence Schema” (QSVLES) proposed by Lassere et.al. (1).

Procedure

A Pubmed literature search was conducted to identify AD biomarkers with SEP potential, and the QSVLES was applied to determine the extent of the SEP validity.

Results

MRI, PET and MRS measures attained a total validity score of 4, NAA/Cre a total score of 5, and cerebral blood flow (SPECT), A, Tau and APP a total score of 2. None of these biomarkers could fall into the rank of Levels 1 or 2, reserved for SEPs, according to the QSVLES criteria. This was mainly attributed to the lack of sufficient evidence that was derived from high ranking studies (RCT, prospective observational studies).

Conclusion

Though residing on SEPs as sole determinants of the benefit/risk ratio of AD medications seems to be pretty far, there could be certain cases where the use of SEPs may be beneficial, making efficient therapies available faster when there is a major public health interest involved. However, the potential risks of relying on invalid SEPs should not be underestimated and therefore the research on SEP validation and the development of specific validation guidance should be encouraged. The QSVLES, though not devoid of criticism, may be proposed as a starting point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lassere M.N. The Biomarker-Surrogacy Evaluation Schema: a review of the biomarker-surrogate literature and a proposal for a criterion-based, quantitative, multidimensional hierarchical levels of evidence schema for evaluating the status of biomarkers as surrogate endpoints. Stat Methods Med Res 2008, 17(3): 303–340

    Article  PubMed  Google Scholar 

  2. Fleming T.R, DeMets D.L. Surrogate End Points in Clinical Trials: Are We Being Misled? Ann Intern Med. 1996; 125:605–613.

    PubMed  CAS  Google Scholar 

  3. Colburn WA. Surrogate markers and clinical pharmacology. Journal of Clinical Pharmacology 1995; 35: 441–442.

    PubMed  CAS  Google Scholar 

  4. Colburn WA. Optimizing the use of biomarkers, surrogate endpoints, and clinical endpoints for more efficient drug development. J Clin Pharmacol. 2000; 40(12):1419–1427.

    PubMed  CAS  Google Scholar 

  5. Broich K.Outcome measures in clinical trials on medicinal products for the treatment of dementia: a European regulatory perspective. Int Psychogeriatr. 2007; 19(3):509–524.Review

    Google Scholar 

  6. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001; 69(3):89–95

    Article  Google Scholar 

  7. Wagner JA. Overview of biomarkers and surrogate endpoints in drug development. Dis Markers. 2002; 18(2):41–46.

    PubMed  CAS  Google Scholar 

  8. Frank R, Hargreaves R. Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov. 2003 Jul;2(7):566–580.

    Article  PubMed  CAS  Google Scholar 

  9. Feigin A. Evidence from biomarkers and surrogate endpoints. NeuroRx. 2004 1(3):323–330.

    Article  PubMed  Google Scholar 

  10. Weir CJ, Walley RJ. Statistical evaluation of biomarkers as surrogate endpoints: a literature review. Stat Med. 2006; 25(2):183–203.

    Article  PubMed  Google Scholar 

  11. Jack CR Jr, Slomkowski M, Gracon S, Hoover TM, Felmlee JP, Stewart K, Xu Y, Shiung M, O’Brien PC, Cha R, Knopman D, Petersen RC. MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD. Neurology. 2003;60(2):253–260.

    Article  PubMed  Google Scholar 

  12. Jack CR Jr, Shiung MM, Gunter JL, O’Brien PC, Weigand SD, Knopman DS, Boeve BF, Ivnik RJ, Smith GE, Cha RH, Tangalos EG, Petersen RC. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology. 2004 Feb 24;62(4):591–600.

    PubMed  Google Scholar 

  13. Du AT, Schuff N, Kramer JH, Ganzer S, Zhu XP, Jagust WJ, Miller BL, Reed BR, Mungas D, Yaffe K, Chui HC, Weiner MW. Higher atrophy rate of entorhinal cortex than hippocampus in AD. Neurology. 2004;62(3):422–427.

    PubMed  CAS  Google Scholar 

  14. Fox NC, Cousens S, Scahill R, Harvey RJ, Rossor MN. Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. 1: Arch Neurol. 2000 Mar;57(3):339–344.

    Article  PubMed  CAS  Google Scholar 

  15. Andreasen N, Hesse C, Davidsson P, Minthon L, Wallin A, Winblad B, Vanderstichele H, Vanmechelen E, Blennow K. Cerebrospinal fluid beta-amyloid(1–42) in Alzheimer disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease. Arch Neurol. 1999;56(6):673–680

    Article  PubMed  CAS  Google Scholar 

  16. Galasko D. CSF tau and Abeta42: logical biomarkers for Alzheimer’s disease? Neurobiol Aging. 1998;19(2):117–119.

    Article  PubMed  CAS  Google Scholar 

  17. Mani RB. The evaluation of disease modifying therapies in Alzheimer’s disease: a regulatory viewpoint. Stat Med. 2004;23(2):305–314.

    Article  PubMed  Google Scholar 

  18. Boissel JP, Collet JP, Moleur P, Haugh M.Surrogate endpoints: a basis for a rational approach. Eur J Clin Pharmacol. 1992;43(3):235–244.

    Article  PubMed  CAS  Google Scholar 

  19. Greenhalgh T. How to read a paper. Papers that report drug trials. BMJ. 1997; 315(7106):480–483

    PubMed  CAS  Google Scholar 

  20. Buyse M, Molenberghs G. Criteria for the validation of surrogate endpoints in randomized experiments. Biometrics. 1998;54(3):1014–1029.

    Article  PubMed  CAS  Google Scholar 

  21. Lee JW, Weiner RS, Sailstad JM, Bowsher RR, Knuth DW, O’Brien PJ, Fourcroy JL, Dixit R, Pandite L, Pietrusko RG, Soares HD, Quarmby V, Vesterqvist OL, Potter DM, Witliff JL, Fritche HA, O’Leary T, Perlee L, Kadam S, Wagner JA. Method validation and measurement of biomarkers in nonclinical and clinical samples in drug development: a conference report. Pharm Res. 2005;22(4):499–511.

    Article  PubMed  CAS  Google Scholar 

  22. Prentice RL.Surrogate endpoints in clinical trials: definition and operational criteria. Stat Med. 1989; 8(4):431–440.

    Google Scholar 

  23. Lesko LJ, Atkinson AJ Jr. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol. 2001;41:347–366.

    Article  PubMed  CAS  Google Scholar 

  24. Alonso A, Molenberghs G, Geys H, Buyse M, Vangeneugden T. A unifying approach for surrogate marker validation based on Prentice’s criteria. Stat Med. 2006;25(2):205–221.

    Article  PubMed  Google Scholar 

  25. Thal LJ, Kantarci K, Reiman EM, Klunk WE, Weiner MW, Zetterberg H, Galasko D, Praticò D, Griffin S, Schenk D, Siemers E. The role of biomarkers in clinical trials for Alzheimer disease. Alzheimer Dis Assoc Disord. 2006;20(1):6–15. Review.

    Article  PubMed  Google Scholar 

  26. Wagner JA, Williams SA, Webster CJ.Biomarkers and surrogate end points for fit-for-purpose development and regulatory evaluation of new drugs.Clin Pharmacol Ther. 2007;81(1):104–107.

    Article  PubMed  CAS  Google Scholar 

  27. Caselli RJ, Beach TG, Yaari R, Reiman EM. Alzheimer’s disease a century later. J Clin Psychiatry. 2006;67(11):1784–1800.

    Article  PubMed  CAS  Google Scholar 

  28. Ward M. Biomarkers for Alzheimer’s disease. Expert Rev Mol Diagn. 2007;7(5):635–646.

    Article  PubMed  CAS  Google Scholar 

  29. Yaari R, Corey-Bloom J.Alzheimer’s disease. Semin Neurol. 2007 Feb;27(1):32–41

    Article  PubMed  Google Scholar 

  30. Thies B, Truschke E, Morrison-Bogorad M, Hodes RJ. Consensus report of the Working Group on: molecular and biochemical markers of Alzheimer’s disease. Neurobiol Aging. 1999 Mar–Apr;20(2):247.

    Article  PubMed  CAS  Google Scholar 

  31. Growdon JH. Incorporating biomarkers into clinical drug trials in Alzheimer’s disease. J Alzheimers Dis. 2001 Jun;3(3):287–292.

    PubMed  CAS  Google Scholar 

  32. Matthews B, Siemers ER, Mozley PD. Imaging-based measures of disease progression in clinical trials of disease-modifying drugs for Alzheimer disease. Am J Geriatr Psychiatry. 2003;11(2):146–159. Review.

    PubMed  Google Scholar 

  33. Turner RS. Biomarkers of Alzheimer’s disease and mild cognitive impairment: are we there yet? Exp Neurol. 2003;183(1):7–10. Review.

    Article  PubMed  Google Scholar 

  34. Hampel H, Goernitz A, Buerger K Advances in the development of biomarkers for Alzheimer’s disease: from CSF total tau and A beta(1–42) proteins to phosphorylated tau protein. Brain Research Bulletin 2003; 61(3): 243–253

    Article  PubMed  CAS  Google Scholar 

  35. Hampel H, Mitchell A, Blennow K, Frank RA, Brettschneider S, Weller L, Möller HJ. Core biological marker candidates of Alzheimer’s disease — perspectives for diagnosis, prediction of outcome and reflection of biological activity. J Neural Transm. 2004 Mar;111(3):247–272.

    Article  PubMed  CAS  Google Scholar 

  36. Jagust W.Molecular neuroimaging in Alzheimer’s disease. NeuroRx. 2004 Apr;1(2):206–212.

  37. Kantarci K, Jack CR Jr. Quantitative magnetic resonance techniques as surrogate markers of Alzheimer’s disease. NeuroRx. 2004 Apr;1(2):196–205.

    Article  PubMed  Google Scholar 

  38. Irizarry MC. Biomarkers of Alzheimer disease in plasma. NeuroRx. 2004 Apr;1(2):226–234.

    Article  PubMed  Google Scholar 

  39. Norfray JF, Provenzale JM. Alzheimer’s disease: neuropathologic findings and recent advances in imaging. AJR Am J Roentgenol. 2004 Jan;182(1):3–13.

    PubMed  Google Scholar 

  40. Pupi A, Mosconi L, Nobili FM, Sorbi S. Toward the validation of functional neuroimaging as a potential biomarker for Alzheimer’s disease: implications for drug development. Mol Imaging Biol. 2005 Jan–Feb;7(1):59–68.

    Article  PubMed  Google Scholar 

  41. Galasko D. Biomarkers for Alzheimer’s disease—clinical needs and application. J Alzheimers Dis. 2005; 8(4):339–346. Review.

    PubMed  CAS  Google Scholar 

  42. Coimbra A, Williams DS, Hostetler ED. The role of MRI and PET/SPECT in Alzheimer’s disease. Curr Top Med Chem. 2006;6(6):629–647. Review.

    Article  PubMed  CAS  Google Scholar 

  43. Modrego PJ.The effect of drugs for Alzheimer disease assessed by means of neuroradiological techniques. Curr Med Chem. 2006;13(28):3417–3424.

    Google Scholar 

  44. Lehéricy S, Marjanska M, Mesrob L, Sarazin M, Kinkingnehun S. Magnetic resonance imaging of Alzheimer’s disease. Eur Radiol. 2007 Feb;17(2):347–362.

    Article  PubMed  Google Scholar 

  45. Mueller SG, Schuff N, Weiner MW. Evaluation of treatment effects in Alzheimer’s and other neurodegenerative diseases by MRI and MRS. NMR Biomed. 2006 Oct;19(6):655–668.

    Article  PubMed  CAS  Google Scholar 

  46. Solfrizzi V, D’Introno A, Colacicco AM, Capurso C, Todarello O, Pellicani V, Capurso SA, Pietrarossa G, Santamato V, Capurso A, Panza F. Circulating biomarkers of cognitive decline and dementia. Clin Chim Acta. 2006 Feb;364(1–2):91–112. Review.

    Article  PubMed  CAS  Google Scholar 

  47. Dickerson BC. Advances in functional magnetic resonance imaging: technology and clinical applications. Neurotherapeutics. 2007 Jul;4(3):360–370

    Article  PubMed  Google Scholar 

  48. Hampel H, Burger K, Pruessner JC, Zinkowski R, DeBernardis J, Kerkman D, Leinsinger G, Evans AC, Davies P, Moller HJ, Teipel SJ. Correlation of cerebrospinal fluid levels of tau protein phosphorylated at threonine 231 with rates of hippocampal atrophy in Alzheimer disease. Arch Neurol. 2005 May; 62(5):770–773.

    Article  PubMed  Google Scholar 

  49. Chao LL, Schuff N, Kramer JH, Du AT, Capizzano AA, O’Neill J, Wolkowitz OM, Jagust WJ, Chui HC, Miller BL, Yaffe K, Weiner MW. Reduced medial temporal lobe N-acetylaspartate in cognitively impaired but nondemented patients. Neurology. 2005 Jan 25;64(2):282–289.

    PubMed  CAS  Google Scholar 

  50. Riekkinen PJ Sr. Volumes of hippocampus, amygdala and frontal lobes in the MRI-based diagnosis of early Alzheimer’s disease: correlation with memory functions. J Neural Transm Park Dis Dement Sect. 1995;9(1):73–86.

    Article  PubMed  Google Scholar 

  51. Csernansky JG, Wang L, Miller JP, Galvin JE, Morris JC. Neuroanatomical predictors of response to donepezil therapy in patients with dementia. Arch Neurol. 2005 Nov;62(11):1718–1722.

    Article  PubMed  Google Scholar 

  52. Bokde AL, Teipel SJ, Drzezga A, Thissen J, Bartenstein P, Dong W, Leinsinger G, Born C, Schwaiger M, Moeller HJ, Hampel H. Association between cognitive performance and cortical glucose metabolism in patients with mild Alzheimer’s disease. Dement Geriatr Cogn Disord. 2005;20(6):352–357.

    Article  PubMed  CAS  Google Scholar 

  53. Potkin SG, Alva G, Keator D, Carreon D, Fleming K, Fallon JH. Brain metabolic effects of Neotrofin in patients with Alzheimer’s disease. Brain Res. 2002 Sep 27;951(1):87–95.

    Article  Google Scholar 

  54. Nobili F, Vitali P, Canfora M, Girtler N, De Leo C, Mariani G, Pupi A, Rodriguez G. Effects of long-term Donepezil therapy on rCBF of Alzheimer’s patients. Clin. Neurophysiol. 2002 Aug;113(8):1241–1248. [Nobili et.al.2002(a)]

    Article  PubMed  CAS  Google Scholar 

  55. Hanyu H, Shimizu T, Tanaka Y, Takasaki M, Koizumi K, Abe K.Regional cerebral blood flow patterns and response to donepezil treatment in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord. 2003;15(4):177–182.

    Article  PubMed  CAS  Google Scholar 

  56. Shimizu S, Hanyu H, Iwamoto T, Koizumi K, Abe K. SPECT follow-up study of cerebral blood flow changes during Donepezil therapy in patients with Alzheimer’s disease. J Neuroimaging. 2006 Jan;16(1):16–23.

    PubMed  Google Scholar 

  57. Rose, S., de Zubicaray, G., Wang, D., Galloway, G., Chalk, J., Eagle, S., Semple, J., & Doddrell, D. (1999). A 1H MRS study of probable Alzheimer’s disease and normal aging: Implications for longitudinal monitoring of dementia progression. Magnetic Resonance Imaging, 17, 291–299.

    Article  PubMed  CAS  Google Scholar 

  58. Kantarci K, Smith GE, Ivnik RJ, Petersen RC, Boeve BF, Knopman DS, Tangalos EG, Jack CR Jr. 1H magnetic resonance spectroscopy, cognitive function, and apolipoprotein E genotype in normal aging, mild cognitive impairment and Alzheimer’s disease. J Int Neuropsychol Soc. 2002;8(7):934–942.

    Article  PubMed  CAS  Google Scholar 

  59. Waldman AD, Rai GS.The relationship between cognitive impairment and in vivo metabolite ratios in patients with clinical Alzheimer’s disease and vascular dementia: a proton magnetic resonance spectroscopy study. Neuroradiology. 2003;45(8):507–512. Epub 2003 Jul 22.

    Article  PubMed  CAS  Google Scholar 

  60. Frederick B, Satlin A, Wald LL, Hennen J, Bodick N, Renshaw PF. Brain proton magnetic resonance spectroscopy in Alzheimer disease: changes after treatment with xanomeline. Am J Geriatr Psychiatry. 2002;10(1):81–88.

    PubMed  Google Scholar 

  61. Tune L, Tiseo PJ, Ieni J, Perdomo C, Pratt RD, Votaw JR, Jewart RD, Hoffman JM.Donepezil HCl (E2020) maintains functional brain activity in patients with Alzheimer disease: results of a 24-week, double-blind, placebo-controlled study. Am J Geriatr Psychiatry. 2003;11(2):169–177.

    PubMed  Google Scholar 

  62. Tapiola T., T. Pirttil and H. Soininen, Three-year follow-up of cerebrospinal fluid tau, beta-amyloid 42 and 40 concentrations in Alzheimer’s disease. Neurosci. Lett. 280 (2000), pp. 119–122

    Article  PubMed  CAS  Google Scholar 

  63. Andreasen N., L. Minthon, P. Davidsson, E. Vanmechelen, H. Vanderstichele, B. Winblad and K. Blennow, Evaluation of CSF-tau and CSF-A-beta-42 as diagnostic markers for Alzheimer disease in clinical practice. Arch. Neurol. 58 (2001), pp. 373–379.

    Article  PubMed  CAS  Google Scholar 

  64. Andreasen N., E. Vanmechelen, A. Van de Voorde, P. Davidsson, C. Hesse, S. Tarvonen, I. Raiha, L. Sourander, B. Winblad and K. Blennow, Cerebrospinal fluid tau protein as a biochemical marker for Alzheimer’s disease: a community based follow up study. J. Neurol. Neurosurg. Psychiatry 64 (1998), pp. 298–305.

    Article  PubMed  CAS  Google Scholar 

  65. Mecocci P, Cherubini A, Bregnocchi M, Chionne F, Cecchetti R, Lowenthal DT, Senin U. Tau protein in cerebrospinal fluid: a new diagnostic and prognostic marker in Alzheimer disease? Alzheimer Dis Assoc Disord. 1998 Sep;12(3):211–214.

    Article  PubMed  CAS  Google Scholar 

  66. Nishimura T, Takeda M, Nakamura Y, Yosbida Y, Arai H, Sasaki H, Shouji M, Hirai S, Khise K, Tanaka K, Hamamoto M, Yamamoto H, Matsubayashi T, Urakami K, Adachi Y, Nakashima K, Toji H, Nakamura S, Yoshida H. Basic and clinical studies on the measurement of tau protein in cerebrospinal fluid as a biological marker for Alzheimer’s disease and related disorders: multicenter study in Japan. Methods Find Exp Clin Pharmacol. 1998;20(3):227–235.

    PubMed  CAS  Google Scholar 

  67. Sunderland T., B. Wolozin, D. Galasko, J. Levy, R. Dukoff, M. Bahro, R. Lasser, R. Motter, T. Lehtimaki and P. Seubert, Longitudinal stability of CSF tau levels in Alzheimer patients. Biol. Psychiatry 46 (1999), pp. 750–755.

    Article  PubMed  CAS  Google Scholar 

  68. Liu HC, Wang HC, Ko SY, Wang PN, Chi CW, Hong CJ, Lin KN, Liu TY. Correlation between platelet amyloid precursor protein isoform ratio and cognition in Alzheimer’s disease.J Alzheimers Dis. 2007;11(1):77–84.

    PubMed  CAS  Google Scholar 

  69. Thompson PM, Hayashi KM, De Zubicaray GI, Janke AL, Rose SE, Semple J, Hong MS, Herman DH, Gravano D, Doddrell DM, Toga AW. Mapping hippocampal and ventricular change in Alzheimer disease. Neuroimage. 2004 Aug;22(4):1754–1766.

    Article  PubMed  Google Scholar 

  70. Baxter LC, Sparks DL, Johnson SC, Lenoski B, Lopez JE, Connor DJ, Sabbagh MN. Relationship of cognitive measures and gray and white matter in Alzheimer’s disease. J Alzheimers Dis. 2006;9(3):253–260.

    PubMed  Google Scholar 

  71. Chaim TM, Duran FL, Uchida RR, Périco CA, de Castro CC, Busatto GF.Volumetric reduction of the corpus callosum in Alzheimer’s disease in vivo as assessed with voxel-based morphometry. Psychiatry Res. 2007;154(1):59–68.

    Article  PubMed  Google Scholar 

  72. Gootjes L, Bouma A, Van Strien JW, Van Schijndel R, Barkhof F, Scheltens P. Corpus callosum size correlates with asymmetric performance on a dichotic listening task in healthy aging but not in Alzheimer’s disease. Neuropsychologia. 2006;44(2):208–217.

    Article  PubMed  CAS  Google Scholar 

  73. Hampel H, Teipel SJ, Alexander GE, Horwitz B, Teichberg D, Schapiro M, Rapoport SI (1998) Corpus callosum atrophy is a possible indicator for region and cell type specific neuronal degeneration in Alzheimer disease: an MRI analysis. Arch Neurol 55: 193–198

    Article  PubMed  CAS  Google Scholar 

  74. Hampel H, Teipel SJ, Alexander GE, Horwitz B, Hippius H, Möller H-J, Schapiro MB, Rapoport SI (2000b) Corpus callosum measurement is an in vivo indicator for neocortical neuronal integrity, but not white matter pathology, in Alzheimer’s disease. Ann NY Acad Sci 903: 470–477

    Article  PubMed  CAS  Google Scholar 

  75. Laakso MP, Soininen H, Partanen K, Helkala EL, Hartikainen P, Vainio P, Hallikainen M, Hanninen T, Lee JW, Devanarayan V, Barrett YC, Weiner R, Allinson J, Fountain S, Keller S, Weinryb I, Green M, Liu, C.W. Chi, S.Y. Ko, H.C. Wang, C.J. Hong, K.N. Lin, P.N. Wang and T.Y. Liu, Cholinesterase inhibitor affects the amyloid precursor protein isoforms in patients with Alzheimer’s disease, Dement Geriatr Cogn Disord 19 (2005), 345–348

    Article  CAS  Google Scholar 

  76. Mori E, Hirono N, Yamashita H, Imamura T, Ikejiri Y, Ikeda M, Kitagaki H, Shimomura T, Yoneda Y. Premorbid brain size as a determinant of reserve capacity against intellectual decline in Alzheimer’s disease. Am J Psychiatry. 1997 (a);154(1):18–24.

    PubMed  CAS  Google Scholar 

  77. Mori E, Yoneda Y, Yamashita H, Hirono N, Ikeda M, Yamadori A. Medial temporal structures relate to memory impairment in Alzheimer’s disease: an MRI volumetric study. J Neurol Neurosurg Psychiatry. 1997 (b);63(2):214–221.

    Article  PubMed  CAS  Google Scholar 

  78. Petersen RC, Jack CR Jr., Xu YC, et al. Memory and MRI-based hippocampal volumes in aging and AD. Neurology. 2000; 54:581–587.

    PubMed  CAS  Google Scholar 

  79. Stout JC, Jernigan TL, Archibald SL, Salmon DPArch Neurol. Association of dementia severity with cortical gray matter and abnormal white matter volumes in dementia of the Alzheimer type. 1996; 53(8):742–749.

    CAS  Google Scholar 

  80. Teipel SJ, Hampel H, Alexander GE, Schapiro MB, Horwitz B, Teichberg D, Daley E, Möller H-J, Hippius H, Rapoport SI (1998) Dissociation between white matter pathology and corpus callosum atrophy in Alzheimer’s disease. Neurology 51: 1381–1385

    PubMed  CAS  Google Scholar 

  81. Teipel SJ, Bayer W, Alexander GE, Zebuhr Y, Teichberg D, Kulic L, Schapiro MB, Möller H-J, Rapoport SI, Hampel H (2002) Progression of corpus callosum atrophy in Alzheimer’s disease. Arch Neurol 59: 243–248

    Article  PubMed  Google Scholar 

  82. Venneri A, McGeown WJ, Hietanen HM, Guerrini C, Ellis AW, Shanks MF. The anatomical bases of semantic retrieval deficits in early Alzheimer’s disease. Neuropsychologia. 2007

  83. Du AT, Schuff N, Zhu XP, Jagust WJ, Miller BL, Reed BR, Kramer JH, Mungas D, Yaffe K, Chui HC, Weiner MW. Atrophy rates of entorhinal cortex in AD and normal aging. Neurology. 2003; 60(3):481–486.

    PubMed  CAS  Google Scholar 

  84. Fox NC, Scahill RI, Crum WR, Rossor MN. Correlation between rates of brain atrophy and cognitive decline in AD. Neurology.1999; 52(8):1687–1689.

    PubMed  CAS  Google Scholar 

  85. Jack CR Jr, Petersen RC, Xu Y, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Tangalos EG, Kokmen E. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology. 2000;55(4):484–489.

    PubMed  Google Scholar 

  86. Mungas D, Reed BR, Jagust WJ, DeCarli C, Mack WJ, Kramer JH, Weiner MW, Schuff N, Chui HC. Volumetric MRI predicts rate of cognitive decline related to AD and cerebrovascular disease. Neurology. 2002 Sep 24;59(6):867–873.

    Google Scholar 

  87. Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, Herman D, Hong MS, Dittmer SS, Doddrell DM, Toga AW. Dynamics of gray matter loss in Alzheimer’s disease. J Neurosci. 2003 Feb 1;23(3):994–1005.

    PubMed  CAS  Google Scholar 

  88. Wang D, Chalk JB, Rose SE, de Zubicaray G, Cowin G, Galloway GJ, Barnes D, Spooner D, Doddrell DM, Semple J. MR image-based measurement of rates of change in volumes of brain structures. Part II: application to a study of Alzheimer’s disease and normal aging. Magn Reson Imaging. 2002;20(1):41–48.

    Article  PubMed  Google Scholar 

  89. Fox NC, Black RS, Gilman S, Rossor MN, Griffith SG, Jenkins L, Koller M; AN1792(QS-21)-201 Study. Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology. 2005;64(9):1563–1572.

    Article  PubMed  CAS  Google Scholar 

  90. Krishnan RR, Charles HC, Doraiswamy PM, et al. Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer disease. Am J Psychiatry 2003; 160: 2003–2011

    Article  PubMed  Google Scholar 

  91. Riekkinen M, Soininen H, Riekkinen P Sr, Kuikka J, Laakso M, Helkala EL, Partanen J, Riekkinen P Jr. Tetrahydroaminoacridine improves the recency effect in Alzheimer’s disease. Neuroscience. 1998 (2):471–479.

  92. Hanyu H, Tanaka Y, Sakurai H, Takasaki M, Abe K. Atrophy of the substantia innominata on magnetic resonance imaging and response to donepezil treatment in Alzheimer’s disease. Neurosci Lett. 2002;319(1):33–36.

    Article  PubMed  CAS  Google Scholar 

  93. Hanyu H, Shimizu S, Tanaka Y, Hirao K, Iwamoto T, Abe K. MR features of the substantia innominata and therapeutic implications in dementias. Neurobiol Aging. 2007 Apr;28(4):548–554.

    Article  PubMed  Google Scholar 

  94. Hashimoto M, Kazui H, Matsumoto K, Nakano Y, Yasuda M, Mori E. Does donepezil treatment slow the progression of hippocampal atrophy in patients with Alzheimer’s disease? Am J Psychiatry. 2005 Apr;162(4):676–682

    Article  PubMed  Google Scholar 

  95. Riekkinen P Jr, Soininen H, Helkala EL, Partanen K, Laakso M, Vanhanen M, Riekkinen P. Hippocampal atrophy, acute THA treatment and memory in Alzheimer’s disease. Neuroreport. 1995;6(9):1297–1300.

    Article  PubMed  Google Scholar 

  96. Tanaka Y, Hanyu H, Sakurai H, Takasaki M, Abe K Atrophy of the substantia innominata on magnetic resonance imaging predicts response to donepezil treatment in Alzheimer’s disease patients. Dement Geriatr Cogn Disord. 2003;16(3):119–125.

    Article  PubMed  CAS  Google Scholar 

  97. Venneri A, McGeown WJ, Shanks MF. Empirical evidence of neuroprotection by dual cholinesterase inhibition in Alzheimer’s disease. Neuroreport. 2005 Feb 8;16(2):107–110.

    Article  PubMed  CAS  Google Scholar 

  98. Visser PJ, Scheltens P, Pelgrim E, Verhey FR; Dutch ENA-NL-01 Study Group. Medial temporal lobe atrophy and APOE genotype do not predict cognitive improvement upon treatment with rivastigmine in Alzheimer’s disease patients. Dement Geriatr Cogn Disord. 2005;19(2–3):126–133.

    Article  PubMed  CAS  Google Scholar 

  99. Choo IH, Lee DY, Youn JC, Jhoo JH, Kim KW, Lee DS, Lee JS, Woo JI. Topographic patterns of brain functional impairment progression according to clinical severity staging in 116 Alzheimer disease patients: FDG-PET study. Alzheimer Dis Assoc Disord. 2007;21(2):77–84.

    Article  PubMed  Google Scholar 

  100. Potkin S, McDonald S, Gergel I, Alva G, Keater D, and Fallon J (2004). Memantine monotherapy increases brain metabolism (PET) and effectively treats mild to moderate Alzheimer’s disease. Eur J Neurol 11(Suppl 2): 44.

    Google Scholar 

  101. Potkin SG, Anand R, Fleming K, Alva G, Keator D, Carreon D, Messina J, Wu JC, Hartman R, Fallon JH.Brain metabolic and clinical effects of rivastigmine in Alzheimer’s disease. Int J

  102. Teipel SJ, Drzezga A, Bartenstein P, Möller HJ, Schwaiger M, Hampel H. Effects of donepezil on cortical metabolic response to activation during (18)FDG-PET in Alzheimer’s disease: a double-blind cross-over trial. Psychopharmacology (Berl). 2006 Jul;187(1):86–94. Epub 2006 Jun 1.

    Article  CAS  Google Scholar 

  103. Mega MS, Cummings JL, O’Connor SM, Dinov ID, Reback E, Felix J, Masterman DL, Phelps ME, Small GW, Toga AW.Cognitive and metabolic responses to metrifonate therapy in Alzheimer disease. Neuropsychiatry Neuropsychol Behav Neurol. 2001 Jan;14(1):63–68.

    PubMed  CAS  Google Scholar 

  104. Mega MS, Dinov ID, Porter V, Chow G, Reback E, Davoodi P, O’Connor SM, Carter MF, Amezcua H, Cummings JL.Metabolic patterns associated with the clinical response to galantamine therapy: a fludeoxyglucose f 18 positron emission tomographic study. Arch Neurol. 2005 May;62(5):721–728.

    Article  PubMed  Google Scholar 

  105. Stefanova E, Wall A, Almkvist O, Nilsson A, Forsberg A, Långström B, Nordberg A. Longitudinal PET evaluation of cerebral glucose metabolism in rivastigmine treated patients with mild Alzheimer’s disease. J Neural Transm. 2006 Feb;113(2):205–218.

    Article  PubMed  CAS  Google Scholar 

  106. Ebmeier KP, Hunter R, Curran SM, Dougal NJ, Murray CL, Wyper DJ, Patterson J, Hanson MT, Siegfried K, Goodwin GM.Effects of a single dose of the acetylcholinesterase inhibitor velnacrine on recognition memory and regional cerebral blood flow in Alzheimer’s disease. Psychopharmacology (Berl). 1992;108(1–2):103–109.

    Article  CAS  Google Scholar 

  107. Nakano S, Asada T, Matsuda H, Uno M, Takasaki M. Donepezil hydrochloride preserves regional cerebral blood flow in patients with Alzheimer’s disease. J Nucl Med. 2001 Oct;42(10):1441–1445.

    PubMed  CAS  Google Scholar 

  108. Ceravolo R, Volterrani D, Tognoni G, Dell’Agnello G, Manca G, Kiferle L, Rossi C, Logi C, Strauss HW, Mariani G, Murri L. Cerebral perfusional effects of cholinesterase inhibitors in Alzheimer disease. Clin Neuropharmacol. 2004 Jul–Aug;27(4):166–170.

    Article  PubMed  CAS  Google Scholar 

  109. Higashiyama S, Kawabe J, Hashimoto H, Akiyama H, Kawamura E, Torii K, Inoue K, Kiriike N, Shiomi S, Inoue Y. 3DSRT evaluation of responses of Alzheimer type dementia to donepezil hydrochloride therapy. Osaka City Med J. 2006 Dec;52(2):55–62.

    PubMed  CAS  Google Scholar 

  110. Lojkowska W, Ryglewicz D, Jedrzejczak T, Minc S, Jakubowska T, Jarosz H, Bochynska A.The effect of cholinesterase inhibitors on the regional blood flow in patients with Alzheimer’s disease and vascular dementia. J Neurol Sci. 2003 Dec 15;216(1):119–126.

    Article  CAS  Google Scholar 

  111. Mega MS, Dinov ID, Lee L, O’Connor SM, Masterman DM, Wilen B, Mishkin F, Toga AW, Cummings JL.Orbital and dorsolateral frontal perfusion defect associated with behavioral response to cholinesterase inhibitor therapy in Alzheimer’s disease. J Neuropsychiatry Clin Neurosci. 2000 Spring;12(2):209–218

    PubMed  CAS  Google Scholar 

  112. Rodriguez G, Vitali P, Canfora M, Calvini P, Girtler N, De Leo C, Piccardo A, Nobili F. Quantitative EEG and perfusional single photon emission computed tomography correlation during long-term donepezil therapy in Alzheimer’s disease. Clin Neurophysiol. 2004 Jan;115(1):39–49

    Article  PubMed  CAS  Google Scholar 

  113. Warren S, Hier DB, Pavel D.Visual form of Alzheimer’s disease and its response to anticholinesterase therapy. J Neuroimaging. 1998 Oct;8(4):249–252.

    PubMed  CAS  Google Scholar 

  114. Yoshida T, Ha-Kawa S, Yoshimura M, Nobuhara K, Kinoshita T, Sawada S., Wang W, Zhang XH, Ma L, Yin H, Li DJ. [An interventional study on amnestic mild cognitive impairment with small dose donepezil] Zhonghua Nei Ke Za Zhi.2004Oct;43(10):760–763.

    Google Scholar 

  115. Chantal S, Labelle M, Bouchard RW, Braun CM, Boulanger Y. Correlation of regional proton magnetic resonance spectroscopic metabolic changes with cognitive deficits in mild Alzheimer disease. Arch Neurol. 2002 Jun;59(6):955–962.

    Article  PubMed  Google Scholar 

  116. Heun R, Schlegel S, Graf-Morgenstern M, Tintera J, Gawehn J, Stoeter P. Proton magnetic resonance spectroscopy in dementia of Alzheimer type. Int J Geriatr Psychiatry. 1997;12:349–358

    Article  PubMed  CAS  Google Scholar 

  117. Huang W, Alexander GE, Chang L, Shetty HU, Krasuski JS, Rapoport SI, Schapiro MB.Brain metabolite concentration and dementia severity in Alzheimer’s disease: a (1)H MRS study. Neurology. 2001 Aug 28;57(4):626–632.

    Google Scholar 

  118. Jung RE, Yeo RA, Chiulli SJ, Sibbitt WL Jr, Weers DC, Hart BL, Brooks WM. Biochemical markers of cognition: a proton MR spectroscopy study of normal human brain. Neuroreport. 1999 Nov 8;10(16):3327–3331.

    Article  PubMed  CAS  Google Scholar 

  119. Parnetti L, Tarducci R, Presciutti O, Lowenthal DT, Pippi M, Palumbo B, Gobbi G, Pelliccioli GP, Senin U. Proton magnetic resonance spectroscopy can differentiate Alzheimer’s disease from normal aging. Mech Ageing Dev. 1997 Jul;97(1):9–14.

    Article  PubMed  CAS  Google Scholar 

  120. Salvan AM, Ceccaldi M, Confort-Gouny S, Milandre C, Cozzone PJ, Vion-Dury J. Correlations between cognitive status and cerebral inositol in Alzheimer’s type dementia. J Neurol. 1998;245:686–688.

    Article  PubMed  CAS  Google Scholar 

  121. Pfefferbaum A, Adalsteinsson A, Spielman D, Sullivan EV, Lim KO. In vivo brain concentrations of N-acetyl compounds, creatine and choline in Alzheimer disease. Arch Gen Psychiatry. 1999;56:185–192

    Article  PubMed  CAS  Google Scholar 

  122. Doraiswamy, P., Charles, H., & Krishnan, K. (1998). Prediction of cognitive decline in early Alzheimer’s disease [Letter to the editor]. Lancet, 352, 1678.

  123. Schuff, N., Amend, D., Meyerhoff, D., Tanabe, J., Norman, D., Fein, G., & Weiner, M. (1998). Alzheimer disease: Quantitative 1H-MR spectroscopic imaging of frontoparietal brain. Radiology, 207, 91–102

    PubMed  CAS  Google Scholar 

  124. Satlin A, Bodick N, Offen WW, Renshaw PF. Brain proton magnetic resonance spectroscopy (1H-MRS) in Alzheimer’s disease: changes after treatment with xanomeline, an M1 selective cholinergic agonist. Am J Psychiatry. 1997 Oct;154(10):1459–1461.

    PubMed  CAS  Google Scholar 

  125. Arai H., M. Terajima, M. Miura, S. Higuchi, T. Muramatsu, N. Machida, H. Seiki, S. Takase, C.M. Clark, V.M.Y. Lee, J.Q. Trojanowski and H. Sasaki, Tau in cerebrospinal fluid: a potential diagnostic marker in Alzheimer’s disease. Ann. Neurol. 38 (1995), pp. 649–652.

    Article  PubMed  CAS  Google Scholar 

  126. Di Luca M, Pastorino L, Bianchetti A, Perez J, Vignolo LA, Lenzi GL, Trabucchi M, Cattabeni F, Padovani A. Differential level of platelet amyloid beta precursor protein isoforms: an early marker for Alzheimer disease. Arch Neurol. 1998 Sep;55(9):1195–1200.

    Article  PubMed  Google Scholar 

  127. Blomberg M., M. Jensen, H. Basun, L. Lannfelt and L.O. Wahlund, Increasing cerebrospinal fluid tau levels in a subgroup of Alzheimer patients with apolipoprotein E allele epsilon 4 during 14 months follow-up. Neurosci. Lett. 214 (1996), pp. 163–166.

    Article  PubMed  CAS  Google Scholar 

  128. Fukumoto H., M. Tennis, J.J. Locascio, B.T. Hyman, J.H. Growdon and M.C. Irizarry, Age but not diagnosis is the main predictor of plasma amyloid-protein levels, Arch Neurol 60 (2003), pp. 958–964.

    Article  PubMed  Google Scholar 

  129. Ganzer S, Arlt S, Schoder V, Buhmann C, Mandelkow EM, Finckh U, Beisiegel U, Naber D, Müller-Thomsen T. CSF-tau, CSF-Abeta 1–42, ApoE-genotype and clinical parameters in the diagnosis of Alzheimer’s disease: combination of CSF-tau and MMSE yields highest sensitivity and specificity. J Neural Transm. 2003 Oct;110(10):1149–1160.

    Article  PubMed  CAS  Google Scholar 

  130. Hock C, Golombowski S, Muller-Spahn F, Naser W, Beyreuther K, Monning U, Schenk D, Vigo-Pelfrey C, Bush AM, Moir R, Tanzi RE, Growdon JH, Nitsch RM (1998) Cerebrospinal fluidlevels of amyloid precursor protein and amyloid β-peptide in Alzheimer’s disease and major depression- inverse correlation with dementia severity. Eur Neurol 39: 111–118

    Article  PubMed  CAS  Google Scholar 

  131. Hulstaert F, Blennow K, Ivanoiu A, Schoonderwald H, Riemenschneider M, Deyn PD, Banche C, Cras P, Wiltfang J, Mehta P, Iqbal K, Pottel H, Vanmechelen E, Vanderstichele H (1999) Improved discrimination of Alzheimer’s disease patients from other subject groups using the combined measure of β-amyloid (1–42) and tau in CSF: a multicenter study. Neurology 52:1555–1562

    PubMed  CAS  Google Scholar 

  132. Ibach B, Binder H, Dragon M, et al. Cerebrospinal fluid tau and beta-amyloid in Alzheimer patients, disease controls and an age-matched random sample. Neurobiol Aging 2006;27:1202–1211

    Article  PubMed  CAS  Google Scholar 

  133. Kanai M, Matsubara E, Isoe K, Urakami K, Nakashima K, Arai H, Sasaki H, Abe K, Iwatsubo T, Kosaka T, Watanabe M, Tomidoroko Y, Shizuka M, Mizushima K, Nakamura T, Igeta Y, Ikeda Y, Amari M, Kawarabayashi T, Ishiguro K, Harigaya Y, Wakabayashi K, Okamoto K, Hirai S, Shoji M (1998) Longitudinal study of cerebrospinal fluid levels of tau, Aβ1–40 and Aβ1–42 in Alzheimer’s disease: a study in Japan. Ann Neurol 44: 17–26

    Article  PubMed  CAS  Google Scholar 

  134. Mehta P.D., T. Pirttila, B.A. Patrick, M. Barshatzky and S.P. Mehta, Amyloid protein 1–40 and 1–42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease, Neurosci Lett 304 (2001), pp. 102–106.

    Article  PubMed  CAS  Google Scholar 

  135. Jessen F, Traeber F, Freymann K, Maier W, Schild HH, Block W. Treatment monitoring and response prediction with proton MR spectroscopy in AD. Neurology. 2006 Aug 8;67(3):528–530.

    Article  PubMed  CAS  Google Scholar 

  136. Padovani A, Pastorino L, Borroni B, Colciaghi F, Rozzini L, Monastero R, Perez J, Pettenati C, Mussi M, Parrinello G, Cottini E, Lenzi GL, Trabucchi M, Cattabeni F, Di Luca M.Amyloid precursor protein in platelets: a peripheral marker for the diagnosis of sporadic AD. Neurology. 2001 Dec 26;57(12):2243–2248.

    PubMed  CAS  Google Scholar 

  137. Riemenschneider M, Buch K, Schmolke M, et al. Cerebrospinal protein tau is elevated in early Alzheimer’s disease. Neurosci Lett 1996;212:209–211.

    Article  PubMed  CAS  Google Scholar 

  138. Riemenschneider M, Schmolke M, Lautenschlager N, Guder W, Vanderstichele H, Vanmechelen E, Kurz A (2000) Cerebrospinal beta-amyloid (1–42) in early Alzheimer’s disease. Association with apolipoprotein E genotype and cognitive decline. Neurosci Lett 284: 85–88

    Article  PubMed  CAS  Google Scholar 

  139. Riemenschneider M, Schmolke M, Lautenschlager N, Vanderstichele H, Vanmechelen E, Guder W, Kurz A (2002) Association of CSF apolipoprotein E, Aß42 and cognition in Alzheimer’s disease. Neurobiol Aging 23: 205–211

    Article  PubMed  CAS  Google Scholar 

  140. Samuels S.C, J.M. Silverman, D.B. Marin, E.R. Peskind, S.G. Younki, D.A. Greenberg, E. Schnur, J. Santoro and K.L. Davis, CSF beta-amyloid, cognition, and APOE genotype in Alzheimer’s disease. Neurology 52 (1999), pp. 547–551.

    PubMed  CAS  Google Scholar 

  141. Shoji M, Matsubara E, Kanai M, Watanabe M, Nakamura T, Tomidokoro Y, Shizuka M, Wakabayashi K, Igeta Y, Ikeda Y, Mizushima K, Amari M, Kawarabayashi T, Ishiguro K, Harigaya Y, Okamoto K, Hirai S (1998) Combination assay of CSF Tau, Aβ1–40 and Aβ2–42 as a biochemical marker of Alzheimer’s disease. J Neurol Sci 158: 134–140

    Article  PubMed  CAS  Google Scholar 

  142. Squitti R, Barbati G, Rossi L, Ventriglia M, Dal Forno G, Cesaretti S, Moffa F, Caridi I, Cassetta E, Pasqualetti P, Calabrese L, Lupoi D, Rossini PM.Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF [beta]-amyloid, and h-tau. Neurology. 2006 Jul 11;67(1):76–82.

    Article  PubMed  CAS  Google Scholar 

  143. Tato, R.E., Frank, A. and Hernanz, A., Tan protein concentrations in cerebrospinal fluid of patients with dementia of the Alzheimer type, J. Neurol. Neurosurg. Psychiatry, 59 (1995) 280–283

    Article  PubMed  CAS  Google Scholar 

  144. Vigo-Pelfrey C, Seubert P, Barbour R, Blomquist C, Lee M, Lee D, Coria F, Chang L, Miller B, Lieberburg I (1995) Elevation of micrtubule-associated protein tau in the cerebrospinal fluid of patients with Alzheimer’s disease. Neurology 45: 788–793

    PubMed  CAS  Google Scholar 

  145. Baskin F., R.N. Rosenberg, L. Iyer, L. Hynan and C.M. Cullum, Platelet APP isoform ratios correlate with declining cognition in AD, Neurology 54 (2000), 1907–1909.

    PubMed  CAS  Google Scholar 

  146. Hampel H, Buerger K, Kohnken R, Teipel SJ, Zinkowski R, Moeller HJ, Rapoport SI, Davies P. Tracking of Alzheimer’s disease progression with cerebrospinal fluid tau protein phosphorylated at threonine 231.Ann Neurol. 2001 Apr;49(4):545–546.

    Article  PubMed  CAS  Google Scholar 

  147. Munroe, W.A., Southwick, P.C., Chang, L., Scharre, D.W., Echols, Jr., C.L., Fu, P.C., Whaley, J.M. and Wolfert, R.L., Tan protein in cerebrospinal fluid as an aid in the diagnosis of AIzheimer’s disease, Ann. Clin. Lab. Sci., 25 (1995) 207–217.

    PubMed  CAS  Google Scholar 

  148. Skoog I, Davidsson P, Aevarsson O, et al. Cerebrospinal fluid beta-amyloid 42 is reduced before the onset of sporadic dementia: a population-based study in 85-yearolds. Dement Geriatr Cogn Disord 2003;15:169–176

    Article  PubMed  CAS  Google Scholar 

  149. Näslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, Buxbaum JD.Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA. 2000 Mar 22–29;283(12):1571–1577.

    Article  PubMed  Google Scholar 

  150. Parvathy S, Davies P, Haroutunian V, Purohit DP, Davis KL, Mohs RC, Park H, Moran TM, Chan JY, Buxbaum JD. Correlation between Abetax-40-, Abetax-42-, and Abetax-43-containing amyloid plaques and cognitive decline. Arch Neurol. 2001 Dec;58(12):2025–2032. Erratum in: Arch Neurol 2002 Feb;59(2):202.

    Article  PubMed  CAS  Google Scholar 

  151. Hock C., S. Golombowski, W. Naser and F. Müller-Spahn, Increase levels of tau protein in cerebrospinal fluid of patients with Alzheimer’s disease-correlation with degree of cognitive impairment. Ann. Neurol. 37 (1995), pp. 414–415.

    Article  PubMed  CAS  Google Scholar 

  152. Aisen PS, Saumier D, Briand R, Laurin J, Gervais F, Tremblay P, Garceau D. A Phase II study targeting amyloid-beta with 3APS in mild-to-moderate Alzheimer disease. Neurology. 2006 Nov 28;67(10):1757–1763. Epub 2006 Nov 2.

    Article  PubMed  CAS  Google Scholar 

  153. Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC, Eisner L, Kirby L, Rovira MB, Forette F, Orgogozo JM; AN1792(QS-21)-201 Study Team. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology. 2005 May 10;64(9):1553–1562.

    Article  PubMed  CAS  Google Scholar 

  154. Borroni B, Colciaghi F, Pastorino L, Pettenati C, Cottini E, Rozzini L, Monastero R, Lenzi GL, Cattabeni F, Di Luca M, Padovani A.Amyloid precursor protein in platelets of patients with Alzheimer disease: effect of acetylcholinesterase inhibitor treatment. Arch Neurol. 2001 Mar;58(3):442–446.

    Article  PubMed  CAS  Google Scholar 

  155. Borroni B., Colciaghi F., Archetti S., Marcello E., L. Caimi, M. Di Luca and A. Padovani, Predicting cognitive decline inAlzheimer disease. Role of platelet amyloid precursor protein, Alzheimer Dis Assoc Disord 18 (2004), 32–34.

    Article  PubMed  Google Scholar 

  156. Cattabeni, M. Di Luca, A. Padovani, ApoE genotype influences the biological effect of donepezil on APP metabolism in Alzheimer disease: evidence from a peripheral model, Eur Neuropsychopharmacol 12 (2002), 195–200

    PubMed  Google Scholar 

  157. Teipel SJ, Bayer W, Alexander GE, Bokde AL, Zebuhr Y, Teichberg D, Müller-Spahn F, Schapiro MB, Möller HJ, Rapoport SI, Hampel H. Regional pattern of hippocampus and corpus callosum atrophy in Alzheimer’s disease in relation to dementia severity: evidence for early neocortical degeneration. Neurobiol Aging. 2003 Jan-Feb;24(1):85–94

    Article  PubMed  CAS  Google Scholar 

  158. Kantarci K, Jack CR Jr. Quantitative magnetic resonance techniques as surrogate markers of Alzheimer’s disease. NeuroRx. 2004 Apr;1(2):196–205.

    Article  PubMed  Google Scholar 

  159. Katz R. Biomarkers and surrogate markers: an FDA perspective. NeuroRx. 2004 Apr;1(2):189–195. Review.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Gispen-De Wied.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wied, C.C.GD., Kritsidima, M. & Elferink, A.J.A. The validity of biomarkers as surrogate endpoints in Alzheimer’s disease by means of the Quantitative Surrogate Validation Level of Evidence Scheme (QSVLES). J Nutr Health Aging 13, 376–387 (2009). https://doi.org/10.1007/s12603-009-0049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-009-0049-2

Key words

Navigation