Chronically increased activity of the sympathetic nervous system: Our diet-related “evolutionary” inheritance




It is well established that an increased activity of the sympathetic nervous system (SNS) plays an important role in the pathogenesis of cardiovascular disease (CVD), like essential hypertension, atherosclerosis and age related arterial wall thickening, heart failure, and ventricular arrhythmias. It is also well established that SNS activity is influenced by food ingestion, and that diet composition plays an important role: Among dietary substrates, carbohydrate (starch and sugars) ingestion significantly increases SNS activity, while protein or fat ingestion has no significant sympathoexcitory effect. The aim of this paper is to investigate the possibility that significant dietary changes during human evolution, i. e. the introduction of starch and sugars into human nutrition, have brought about a deleterious effect: an abnormal, chronically increased activity of the sympathetic nervous system (SNS).


Literature search using MEDLINE to identify publications on the relationship of SNS activity and cardiovascular disease on the one hand and dietary substrates on the other hand.


The introduction of starchy food and sugars has brought about a new metabolic problem: a diet-related chronically increased SNS activity, with adverse effect on human health.

Key words

SNS carbohydrate diet activation cardiovascular evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grassi G, Quarti-Trevano F, Seravalle G, Dell’Oro R. Cardiovascular risk and adrenergic overdrive in the metabolic syndrome. Nutr Metab Cardiovasc Dis. 2007;17: 473–481CrossRefPubMedGoogle Scholar
  2. 2.
    Smith PA, Graham LN, Mackintosh AF, Stoker JB, Mary DA. Relationship between central sympathetic activity and stages of human hypertension. Am J Hypertens. 2004;17: 217–222CrossRefPubMedGoogle Scholar
  3. 3.
    Hauss, -W-H; Bauch, -H-J; Schulte, -H. Adrenaline and noradrenalin as possible chemical mediators in the pathogenesis of arteriosclerosis. Ann N Y Acad Sci. 1990; 598: 91–101CrossRefPubMedGoogle Scholar
  4. 4.
    Dinenno FA, Jones PP, Seals DR, Tanaka H. Age-associated arterial wall thickening is related to elevations in sympathetic activity in healthy humans. Am J Physiol Heart Circ Physiol 2000; 278: H1205–H1210PubMedGoogle Scholar
  5. 5.
    Pauletto P, Scannapieco G, Pessina AC. Sympathetic drive and vascular damage in hypertension and atherosclerosis. Hypertension. 1991; 17(Suppl III): 75–81Google Scholar
  6. 6.
    Erami C, Zhang H, Ho JG, French DM, Faber JE. Alpha(1)-adrenoceptor stimulation directly induces growth of vascular wall in vivo. Am J Physiol Heart Circ Physiol. 2002; 283: H1577–H1587PubMedGoogle Scholar
  7. 7.
    Saxena PR. Interaction between the renin-angiotensin-aldosterone and sympathetic nervous systems. Cardiovasc Pharmacol. 1992;19(Suppl 6): S80–S88.Google Scholar
  8. 8.
    Higashi Y, Saski S, Nakagawa K et al. Excess norepinephrine impairs both endothelium-dependent and -independent vasodilatation in patients with pheochromocytoma. Hypertension 2002; 39: 513–518CrossRefPubMedGoogle Scholar
  9. 9.
    Viles-Gonzales JF, Anand SX, Valdiviezo C, Zafar MU, Hutter R, Sanz J, Rius T, Poon M, Fuster V, Badimon JJ. Update in atherothrombotic disease. Mt Sinai J Med. 2004;71:197–208Google Scholar
  10. 10.
    Lembo G, Napoli R, Capaldo B, Rendina V, Iaccarino G, Volpe M, Trimarco B, Sacca L. Abnormal sympathetic overactivity evoked by insulin in the skeletal muscle of patients with hypertension. J Clin Invest 1992; 90: 24–29CrossRefPubMedGoogle Scholar
  11. 11.
    Fujita T. Symposium on the etiology of hypertension—summarizing studies in 20th century. 5. Renin-angiotensin system and hypertension. Intern Med. 2001; 40: 156–158.CrossRefPubMedGoogle Scholar
  12. 12.
    Sipahi I, Tuzcu EM, Wolski KE, Nicholls SJ, Schoenhagen P, Hu B, Balog C, Shishehbor M, Magyar WA, Crowe TD, Kapadia S, Nissen SE. Beta-blockers and progression of coronary atherosclerosis: pooled analysis of 4 intravascular ultrasonography trials. Ann Intern Med. 2007;147: 10–18.PubMedGoogle Scholar
  13. 13.
    Grassi G. Counteracting the sympathetic nervous system in essential hypertension. Curr Opin Nephrol Hypertens. 2004;13: 513–519.CrossRefPubMedGoogle Scholar
  14. 14.
    Welle S, Ulavivat U, Campell G. Thermic effect of feeding in men: Increased plasma norepinephrine levels following glucose but not protein or fat consumption. Metabolism 1981; 30: 953–958CrossRefPubMedGoogle Scholar
  15. 15.
    Welle SL, Lilavivathana U, Campell RG. Increased plasma norepinephrine concentrations and metabolic rates following glucose ingestion in man. Metabolism 1980; 29: 806–809CrossRefPubMedGoogle Scholar
  16. 16.
    Tentolouris N, Tsigos D, Perea E et al. Differential effect of high-fat and highcarbohydrate isoenergetic meals on cardiac autonomic nervous system activity in lean and obese women. Metabolism 2003; 52: 1426–1432CrossRefPubMedGoogle Scholar
  17. 17.
    Rowe JW, Young JB, Minaker KL et al. Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes 1981; 30: 219–225PubMedGoogle Scholar
  18. 18.
    Scott EM, Greenwood JP, Vacca G, Stoker JB, Gilbey SG, Mary DA. Carbohydrate ingestion, with transient endogenous insulinemia, produces both sympathetic activation and vasodilatation in normal humans. Clin Sci 2002; 102: 523–529.CrossRefPubMedGoogle Scholar
  19. 19.
    Garn SM. What did our ancestors eat? Nutrition Reviews 1989; 47: 337–345PubMedCrossRefGoogle Scholar
  20. 20.
    Thorburn AW, Brand JC, Trustwell AS. Slowly digested and absorbed carbohydrate in traditional bushfoods: a protective factor against diabetes? Am J Clin Nutr 1987; 45: 98–106PubMedGoogle Scholar
  21. 21.
    Björk I, Liljeberg H, Östan E. Low glycemic index foods. Br J Nutr 2000; 83(Suppl 1): S149–S155Google Scholar
  22. 22.
    Krezofski PA, Nutall FQ, Gannon MC, Bartosh N. The effect of protein ingestion on the metabolic response to oral glucose in normal individuals. Am J Clin Nutr. 1986; 44: 847–845Google Scholar
  23. 23.
    Eaton SB, Konner M. Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med 1985; 312: 283–289PubMedGoogle Scholar
  24. 24.
    Rendel JM. The time scale of genetic changes. In: Boyden SV, editor. The impact of civilisation on the biology of man. Canberry, Australian National University Press; 1970. p 27–47Google Scholar
  25. 25.
    Cordain L, Eaton SB, Miller JB, Mann N, Hill K. The paradoxical nature of huntergatherer diets: meat based, yet non-atherogenic. Eur J Clin Nutr 2002; 56(Suppl 1): S 42–S 52Google Scholar
  26. 26.
    Eaton SB, Konner M, Shostak M. Stone agers in the fast lane: chronic degenerative diseases in evolutionary perspective. Am J Med 1988; 84:739–749.CrossRefPubMedGoogle Scholar
  27. 27.
    Blackburn H, Prineas R. Diet and hypertension: anthropology, epidemiology, and public health implications. Prog Biochem Pharmacol 1983; 19: 31–79PubMedGoogle Scholar
  28. 28.
    Giugliano D, Esposito K. Mediterranean diet and metabolic diseases. Curr Opin Lipidol. 2008 Feb;19(1):63–68.PubMedGoogle Scholar
  29. 29.
    Esposito K, Marfella R, Ciotola M et al. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomyzed trial. JAMA 2004; 292: 1440–1446CrossRefPubMedGoogle Scholar
  30. 30.
    Ricardi G, Clemente G Giacco R. Glycemic index of local foods and diets: The Mediterranean experience. Nutr Rev 2003; 61: S56–S60CrossRefGoogle Scholar
  31. 31.
    Frost G, Leeds A, Trew G, Margara R, Dornhorst A. Insulin sensitivity in women at risk of coronary heart disease and the effect of a low glycemic diet. Metabolism 1998; 47: 1245–1251CrossRefPubMedGoogle Scholar
  32. 32.
    Liu S, Willett WC, Stampfer ML, Hu FB, Franz M, Sampson L, Hennekens CH, Manson JE. A prospective study of dietary glycemic load, carbohydrate intake and risk of coronary heart disease in US women. Am J Clin Nutr 2000; 71: 1455–1461PubMedGoogle Scholar
  33. 33.
    Liu S; Willett WC. Dietary glycemic load and atherothrombotic risk. Curr Atheroscler Rep 2002; 4: 454–461CrossRefPubMedGoogle Scholar
  34. 34.
    Pereira MA, Liu S. Types of carbohydrates and risk of cardiovascular disease. J Women’s Health (Larchmt) 2003: 12: 115–122Google Scholar
  35. 35.
    Liu S, Manson JE, Stampfer ML, Holmes MD, Hu FB, Hankinson SE, Willett W. Whole grain consumption and the risk of ischemic stroke in women: a prospective study. JAMA 2000: 284: 1534–1540CrossRefPubMedGoogle Scholar
  36. 36.
    Oh K, Hu FB, Cho E, Rexrode KM, Stampfer MJ, Manson JE, Liu S, Willett WC. 2005. Carbohydrate intake, glycemic index, glycemic load, and diet fiber in relation to risk of stroke in women. Am J Epidem 2005; 161: 161–169CrossRefGoogle Scholar
  37. 37.
    Lee YP, Puddey IB, Hodgson JM. Protein, fibre and blood pressure: potential benefit of legumes. Clin Exp Pharmacol Physiol. 2008; 35: 473–476CrossRefPubMedGoogle Scholar
  38. 38.
    Kopp W. Pathogenesis and etiology of essential hypertension: role of dietary carbohydrate. Medical Hypotheses 2005; 64: 782–787CrossRefPubMedGoogle Scholar
  39. 39.
    Kopp W. The atherogenic potential of dietary carbohydrate. Prev Med 2006; 42: 336–342CrossRefPubMedGoogle Scholar
  40. 40.
    Brand-Miller JC. Glycemic index in relation to coronary disease. Asia J Clin Nutr 2004; 13(Suppl), S3Google Scholar
  41. 41.
    Ludwig DS. The Glycemic Index. Physiological mechanisms relating to obesity, diabetes and cardiovascular disease. JAMA 2002; 287:2414–2428CrossRefPubMedGoogle Scholar

Copyright information

© Serdi and Springer Verlag France 2009

Authors and Affiliations

  1. 1.Diagnostikzentrum GrazUniv. Doz. Dr. Wolfgang KoppGrazAustria

Personalised recommendations