Skip to main content
Log in

Prevotella copri Improves Selenium Deposition and Meat Quality in the longissimus dorsi Muscle of Fattening Pigs

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Selenium is among the important trace elements that influence the quality of meat. Although it has been established that the gut microbiota is closely associated with selenium metabolism, it has yet to be determined whether these microbes influence the accumulation of selenium in muscles. To identify gut microbiota that potentially influence the deposition of selenium in muscles, we compared the colonic microbial composition of pigs characterized by high and low contents of selenium in the longissimus dorsi muscle and accordingly detected a higher abundance of the bacterium Prevotella copri (P. copri) in pigs with a higher muscle selenium content. To verify the effect of P. copri, 16 pigs weighing approximately 61 kg were fed either a basal diet or a basal diet supplemented with P. copri (1.0 × 1010 CFU/kg feed) for 45 days. The results revealed significant increases in the contents of selenium and selenoprotein in the serum and longissimus dorsi muscle of fattening pigs fed the P. copri–supplemented diet. Moreover, supplementing the feed of pigs with P. copri was observed to promote significant improvement in the antioxidant capacity and quality of meat, including drip loss, pH, and meat color. In conclusion, our findings in this study indicate that P. copri has potential utility as a dietary supplement for improving the selenium status and meat quality in fattening pigs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The 16S rRNA sequence data were deposited in the NCBI SRA database (https://www.ncbi.nlm.nih.gov/sra/) under accession number PRJNA1054783.

Abbreviations

LD:

Longissimus dorsi

SelP:

Selenoprotein P

P. copri :

Prevotella copri

BW:

Body weight

IMF:

Intramuscular fat content

HSE:

High selenium group

LSE:

Low selenium group

FBW:

Final body weight

ADG:

Average daily weight gain

ADFI:

Average daily feed intake

GPX:

Glutathione peroxidase

T-AOC:

Total antioxidant capacity

SOD:

Superoxide dismutase

MDA:

Malondialdehyde

OxyMb:

Oxymyoglobin

MetMb:

Methemoglobin

References

  1. Gu X, Gao CQ (2022) New horizons for selenium in animal nutrition and functional foods. Anim Nutr 11:80–86. https://doi.org/10.1016/j.aninu.2022.06.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Pecoraro BM, Leal DF, Frias-De-Diego A, Browning M, Odle J, Crisci E (2022) The health benefits of selenium in food animals: a review. J Anim Sci Biotechnol 13(1):58. https://doi.org/10.1186/s40104-022-00706-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Puvaca N, Stanacev V (2011) Selenium in poultry nutrition and its effect on meat quality. World Poultry Sci J 67(3):479–484. https://doi.org/10.1017/S0043933911000523

    Article  Google Scholar 

  4. Dong J, Qiu H, Gao S, Hou L, Liu H, Zhu L, Chen F (2023) A combination of selenium and Bacillus subtilis improves the quality and flavor of meat and slaughter performance of broilers. Front Vet Sci 10:1259760. https://doi.org/10.3389/fvets.2023.1259760

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tang KK, Li HQ, Qu KC, Fan RF (2019) Selenium alleviates cadmium-induced inflammation and meat quality degradation via antioxidant and anti-inflammation in chicken breast muscles. Environ Sci Pollut Res Int 26(23):23453–23459. https://doi.org/10.1007/s11356-019-05675-0

    Article  PubMed  CAS  Google Scholar 

  6. Bai X, Li F, Li F, Guo L (2022) Different dietary sources of selenium alter meat quality, shelf life, selenium deposition, and antioxidant status in Hu lambs. Meat Sci 194:108961. https://doi.org/10.1016/j.meatsci.2022.108961

    Article  PubMed  CAS  Google Scholar 

  7. Zhang K, Zhao Q, Zhan T, Han Y, Tang C, Zhang J (2020) Effect of different selenium sources on growth performance, tissue selenium content, meat quality, and selenoprotein gene expression in finishing pigs. Biol Trace Elem Res 196(2):463–471. https://doi.org/10.1007/s12011-019-01949-3

    Article  PubMed  CAS  Google Scholar 

  8. Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W (2023) Gut microbiota bridges dietary nutrients and host immunity. Sci China Life Sci: 1–49. https://doi.org/10.1007/s11427-023-2346-1

  9. Santesmasses D, Mariotti M, Gladyshev VN (2020) Bioinformatics of selenoproteins. Antioxid Redox Signal 33(7):525–536. https://doi.org/10.1089/ars.2020.8044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kasaikina MV, Kravtsova MA, Lee BC, Seravalli J, Peterson DA, Walter J, Legge R, Benson AK, Hatfield DL, Gladyshev VN (2011) Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. FASEB J 25(7):2492–2499. https://doi.org/10.1096/fj.11-181990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kang S, Li R, Jin H, You HJ, Ji GE (2020) Effects of selenium- and zinc-enriched SeZi on antioxidant capacities and gut microbiome in an ICR mouse model. Antioxidants-Basel 9(10): https://doi.org/10.3390/antiox9101028

  12. Ferreira RLU, Sena-Evangelista KCM, de Azevedo EP, Pinheiro FI, Cobucci RN, Pedrosa LFC (2021) Selenium in human health and gut microflora: bioavailability of selenocompounds and relationship with diseases. Front Nutr 8:685317. https://doi.org/10.3389/fnut.2021.685317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zhu H, Zhou Y, Qi Y, Ji R, Zhang J, Qian Z, Wu C, Tan J, Shao L, Chen D (2019) Preparation and characterization of selenium enriched-Bifidobacterium longum DD98, and its repairing effects on antibiotic-induced intestinal dysbacteriosis in mice. Food Funct 10(8):4975–4984. https://doi.org/10.1039/c9fo00960d

    Article  PubMed  CAS  Google Scholar 

  14. Bielik V, Kolisek M (2021) Bioaccessibility and bioavailability of minerals in relation to a healthy gut microbiome. Int J Mol Sci 22(13): https://doi.org/10.3390/ijms22136803

  15. Callejon-Leblic B, Selma-Royo M, Collado MC, Abril N, Garcia-Barrera T (2021) Impact of antibiotic-induced depletion of gut microbiota and selenium supplementation on plasma selenoproteome and metal homeostasis in a mice model. J Agric Food Chem 69(27):7652–7662. https://doi.org/10.1021/acs.jafc.1c02622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhou X, Liu Y, Zhang L, Kong X, Li F (2021) Serine-to-glycine ratios in low-protein diets regulate intramuscular fat by affecting lipid metabolism and myofiber type transition in the skeletal muscle of growing-finishing pigs. Anim Nutr 7(2):384–392. https://doi.org/10.1016/j.aninu.2020.08.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Long J, Liu Y, Zhou X, He L (2021) Dietary serine supplementation regulates selenoprotein transcription and selenoenzyme activity in pigs. Biol Trace Elem Res 199(1):148–153. https://doi.org/10.1007/s12011-020-02117-8

    Article  PubMed  Google Scholar 

  18. He L, Zhou X, Liu Y, Zhou L, Li F (2022) Fecal miR-142a-3p from dextran sulfate sodium-challenge recovered mice prevents colitis by promoting the growth of Lactobacillus reuteri. Mol Ther 30(1):388–399. https://doi.org/10.1016/j.ymthe.2021.08.025

    Article  PubMed  CAS  Google Scholar 

  19. Feldsine P, Abeyta C, Andrews WH, Committee AIM (2002) AOAC International methods committee guidelines for validation of qualitative and quantitative food microbiological official methods of analysis. J AOAC Int 85(5):1187–200

    Article  PubMed  CAS  Google Scholar 

  20. Wang Z, An X, Yang Y, Zhang L, Jiao T, Zhao S (2023) Comprehensive analysis of the longissimus dorsi transcriptome and metabolome reveals the regulatory mechanism of different varieties of meat quality. J Agric Food Chem 71(2):1234–1245. https://doi.org/10.1021/acs.jafc.2c07043

    Article  PubMed  CAS  Google Scholar 

  21. Honikel KO (1998) Reference methods for the assessment of physical characteristics of meat. Meat Sci 49(4):447–457. https://doi.org/10.1016/s0309-1740(98)00034-5

    Article  PubMed  CAS  Google Scholar 

  22. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9(7):775–806. https://doi.org/10.1089/ars.2007.1528

    Article  PubMed  CAS  Google Scholar 

  23. Burk RF, Hill KE (2005) Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr 25:215–235. https://doi.org/10.1146/annurev.nutr.24.012003.132120

    Article  PubMed  CAS  Google Scholar 

  24. Duarte ME, Kim SW (2022) Intestinal microbiota and its interaction to intestinal health in nursery pigs. Anim Nutr 8(1):169–184. https://doi.org/10.1016/j.aninu.2021.05.001

    Article  PubMed  CAS  Google Scholar 

  25. Zhang ZX, Xiang H, Sun GG, Yang YH, Chen C, Li T (2021) Effect of dietary selenium intake on gut microbiota in older population in Enshi region. Genes Environ 43(1):56. https://doi.org/10.1186/s41021-021-00220-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Su ER, Wu YJ, Chen PB, Yu H, Liu SW, Luo HT, Yang YF, Wang C, Shu LF, Wu B, He ZL, Yan QY (2023) Dietary selenium regulates the diversity and stability of microbial communities in stomach and intestine of rabbitfish (Siganus oramin). Aquaculture 563: https://doi.org/10.1016/j.aquaculture.2022.738979.

  27. Mogna L, Nicola S, Pane M, Lorenzini P, Strozzi G, Mogna G (2012) Selenium and zinc internalized by Lactobacillus buchneri Lb26 (DSM 16341) and Bifidobacterium lactis Bb1 (DSM 17850): improved bioavailability using a new biological approach. J Clin Gastroenterol 46(Suppl):S41–S45. https://doi.org/10.1097/MCG.0b013e318268861d

    Article  PubMed  Google Scholar 

  28. Pessione E (2012) Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front Cell Infect Microbiol 2:86. https://doi.org/10.3389/fcimb.2012.00086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Moran-Ramos S, Cerqueda-Garcia D, Lopez-Contreras B, Larrieta-Carrasco E, Villamil-Ramirez H, Molina-Cruz S, Torres N, Sanchez-Tapia M, Hernandez-Pando R, Aguilar-Salinas C, Villarreal-Molina T, Canizales-Quinteros S (2023) A metagenomic study identifies a Prevotella copri enriched microbial profile associated with non-alcoholic steatohepatitis in subjects with obesity. J Gastroenterol Hepatol 38(5):791–799. https://doi.org/10.1111/jgh.16147

    Article  PubMed  Google Scholar 

  30. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, Rostron T, Cerundolo V, Pamer EG, Abramson SB, Huttenhower C, Littman DR (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2:e01202. https://doi.org/10.7554/eLife.01202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Abdelsalam NA, Hegazy SM, Aziz RK (2023) The curious case of Prevotella copri. Gut Microbes 15(2):2249152. https://doi.org/10.1080/19490976.2023.2249152

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang H, Hu CJ, Cheng CH, Cui JJ, Ji YC, Hao XY, Li QQ, Ren WK, Deng BC, Yin YL, Deng JP, Tan CQ (2019) Unraveling the association of fecal microbiota and oxidative stress with stillbirth rate of sows. Theriogenology 136:131–137. https://doi.org/10.1016/j.theriogenology.2019.06.028

    Article  PubMed  CAS  Google Scholar 

  33. Chen C, Fang S, Wei H, He M, Fu H, Xiong X, Zhou Y, Wu J, Gao J, Yang H, Huang L (2021) Prevotella copri increases fat accumulation in pigs fed with formula diets. Microbiome 9(1):175. https://doi.org/10.1186/s40168-021-01110-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Jiang L, Shang M, Yu S, Liu Y, Zhang H, Zhou Y, Wang M, Wang T, Li H, Liu Z, Zhang X (2022) A high-fiber diet synergizes with Prevotella copri and exacerbates rheumatoid arthritis. Cell Mol Immunol 19(12):1414–1424. https://doi.org/10.1038/s41423-022-00934-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Yang H, Yang M, Fang S, Huang X, He M, Ke S, Gao J, Wu J, Zhou Y, Fu H, Chen C, Huang L (2018) Evaluating the profound effect of gut microbiome on host appetite in pigs. BMC Microbiol 18(1):215. https://doi.org/10.1186/s12866-018-1364-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Tomasevic I, Djekic I, Font-i-Furnols M, Terjung N, Lorenzo JM (2021) Recent advances in meat color research. Curr Opin Food Sci 41:81–87. https://doi.org/10.1016/j.cofs.2021.02.012

    Article  Google Scholar 

  37. Suman SP, Joseph P (2013) Myoglobin chemistry and meat color. Annu Rev Food Sci Technol 4:79–99. https://doi.org/10.1146/annurev-food-030212-182623

    Article  PubMed  CAS  Google Scholar 

  38. Hoa VB, Cho SH, Seong PN, Kang SM, Kim YS, Moon SS, Choi YM, Kim JH, Seol KH (2021) The significant influences of pH, temperature and fatty acids on meat myoglobin oxidation: a model study. J Food Sci Technol 58(10):3972–3980. https://doi.org/10.1007/s13197-020-04860-1

    Article  PubMed  CAS  Google Scholar 

  39. Bu Y, Han ML, Tan GZ, Zhu WH, Li XP, Li JR (2022) Changes in quality characteristics of southern bluefin tuna during refrigerated storage and their correlation with color stability. Lwt-Food Sci Technol 154: https://doi.org/10.1016/j.lwt.2021.112715

  40. Wang X, Wang Z, Zhuang H, Nasiru MM, Yuan Y, Zhang J, Yan W (2021) Changes in color, myoglobin, and lipid oxidation in beef patties treated by dielectric barrier discharge cold plasma during storage. Meat Sci 176:108456. https://doi.org/10.1016/j.meatsci.2021.108456

    Article  PubMed  CAS  Google Scholar 

  41. Flohe L, Toppo S, Orian L (2022) The glutathione peroxidase family: discoveries and mechanism. Free Radic Biol Med 187:113–122. https://doi.org/10.1016/j.freeradbiomed.2022.05.003

    Article  PubMed  CAS  Google Scholar 

  42. Tsikas D (2017) Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem 524:13–30. https://doi.org/10.1016/j.ab.2016.10.021

    Article  PubMed  CAS  Google Scholar 

  43. Zhang TT, Sun SY, Gavrilovic A, Li DP, Tang R (2023) Selenium alleviates cadmium-induced oxidative stress, endoplasmic reticulum stress, and apoptosis in L8824 cells. Ecotox Environ Safe 262: https://doi.org/10.1016/j.ecoenv.2023.115337

  44. He Y, Liu Y, Guan P, He L, Zhou X (2023) Serine administration improves selenium status, oxidative stress, and mitochondrial function in longissimus dorsi muscle of piglets with intrauterine growth retardation. Biol Trace Elem Res 201(4):1740–1747. https://doi.org/10.1007/s12011-022-03304-5

    Article  PubMed  CAS  Google Scholar 

  45. Qu RJ, Wang XH, Wang ZY, Wei ZB, Wang LS (2014) Metal accumulation and antioxidant defenses in the freshwater fish in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes. J Hazard Mater 275:89–98. https://doi.org/10.1016/j.jhazmat.2014.04.051

    Article  PubMed  CAS  Google Scholar 

  46. Jankowiak H, Cebulska A, Bocian M (2021) The relationship between acidification (pH) and meat quality traits of polish white breed pigs. Eur Food Res Technol 247(11):2813–2820. https://doi.org/10.1007/s00217-021-03837-4

    Article  CAS  Google Scholar 

  47. Koomkrong N, Boonkaewwan C, Laenoi W, Kayan A (2017) Blood haematology, muscle pH and serum cortisol changes in pigs with different levels of drip loss. Asian-Australas J Anim Sci 30(12):1751–1755. https://doi.org/10.5713/ajas.17.0037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Konkol D, Korzeniowska M, Rózanski H, Górniak W, Andrys M, Opalinski S, Popiela E, Korczynski M (2021) The use of selenium yeast and phytobiotic in improving the quality of broiler chicken meat. Foods 10(11):2558. https://doi.org/10.3390/foods10112558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. El Rammouz R, Berri C, Le Bihan-Duval E, Babilé R, Fernandez X (2004) Breed differences in the biochemical determinism of ultimate pH in breast muscles of broiler chickens -: a key role of AMP deaminase? Poultry Sci 83(8):1445–1451. https://doi.org/10.1093/ps/83.8.1445

    Article  Google Scholar 

  50. Jing JZ, Zeng HJ, Shao QJ, Tang JY, Wang LQ, Jia G, Liu GM, Chen XL, Tian G, Cai JY, Kang B, Che LQ, Zhao H (2023) Selenomethionine alleviates environmental heat stress induced hepatic lipid accumulation and glycogen infiltration of broilers via maintaining mitochondrial and endoplasmic reticulum homeostasis. Redox Biology 67: https://doi.org/10.1016/j.redox.2023.102912

Download references

Acknowledgements

We would like to thank Editage (www.editage.cn) for English language editing.

Funding

This work was supported by the Science and Technology Innovation Program of Hunan Province (2023RC1074), China Agriculture Research System of MOF and MARA (CARS-35), and National Key Research and Development Program of China (2023YFD1301305).

Author information

Authors and Affiliations

Authors

Contributions

Jing Liang: Conceptualization, Writing- Original draft preparation, prepared Figs. 1,2 and graph abstract Yan Zeng: Data curation, Writing- Original draft preparation, prepared Figs. 3,4 Hong Hu: Writing- Reviewing and Editing, Resources,prepared Figs. 5,6 and Table 1 Xihong Zhou: Supervision, Project administration, funding Yulong Yin: Supervision.

Corresponding authors

Correspondence to Yulong Yin or Xihong Zhou.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Zeng, Y., Hu, H. et al. Prevotella copri Improves Selenium Deposition and Meat Quality in the longissimus dorsi Muscle of Fattening Pigs. Probiotics & Antimicro. Prot. (2024). https://doi.org/10.1007/s12602-024-10340-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-024-10340-1

Keywords

Navigation