Skip to main content
Log in

Genomic Insights Into Enterococcus mundtii 203: A Promising Probiotic Candidate Isolated From Camel Feces

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Enterococcus, a common commensal organism in the human gut, exhibits a dual nature with certain strains offering probiotic benefits, while others are associated with nosocomial infections. In this study, we conducted a comprehensive examination of the genome of Enterococcus mundtii strain 203 to assess its probiotic potential and safety profile. The complete genome sequencing, assembly, and annotation were performed, followed by bioinformatics analysis. Our investigation reveals a detailed characterization of the Enterococcus mundtii 203 genome, originally isolated from camel feces, with a size of 3,053,234 bases and a GC content of 38.4%. Importantly, our analysis suggests that this strain poses no risk as a human pathogen due to the absence of antibiotic resistance determinants and virulence factors. The genome harbors a multitude of genes responsible for lactic acid production, bioactive peptide synthesis, adhesion molecule expression, resistance to harsh gut conditions, and enhancement of host metabolism. These findings underline the potential probiotic functionality of Enterococcus mundtii 203, positioning it as a promising candidate. Notably, our study did not identify any sequences related to insertion elements or CRISPR-Cas fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

The genome sequence assembly project has been deposited at GenBank under accession number JAXGFV000000000.

References

  1. FAO/WHO (2001) Consultation mixte d ’ experts FAO / OMS sur l ’ évaluation des propriétés sanitaires et nutritionnelles des probiotiques dans les aliments , y compris le lait en poudre contenant des bactéries lactiques vivantes Cordoba, Argentine 1–34

  2. Alayande KA, Aiyegoro OA, Ateba CN (2020) Distribution of important probiotic genes and identification of the biogenic amines produced by lactobacillus acidophilus pnw3. Foods 9

  3. Švec P, Franz CMAP (2014) The genus Enterococcus. Lact Acid Bact Biodivers Taxon 9781444333:175–211

    Article  Google Scholar 

  4. Lauková A, Focková V, Simonová MP (2020) Enterococcus mundtii isolated from slovak raw goat milk and its bacteriocinogenic potential. Int J Environ Res Public Health 17:1–11

    Article  Google Scholar 

  5. Franz CM, Huch M, Abriouel H, Holzapfel W, Gálvez A (2011) Enterococci as probiotics and their implications in food safety. Int J Food Microbiol In 151:125–40. https://doi.org/10.1016/j.ijfoodmicro.2011.08.014

    Article  CAS  Google Scholar 

  6. Ben Braïek O, Morandi S, Cremonesi P, Smaoui S, Hani K, Ghrairi T (2018) Biotechnological potential, probiotic and safety properties of newly isolated enterocin-producing Enterococcus lactis strains. Lwt 92:361–370. https://doi.org/10.1016/j.lwt.2018.02.045

    Article  CAS  Google Scholar 

  7. Mileriene J, Aksomaitiene J, Kondrotiene K, Asledottir T, Vegarud GE, Serniene L et al (2023) Whole-genome sequence of Lactococcus lactis subsp. lactis LL16 confirms safety, probiotic potential, and reveals functional traits. Microorganisms 11

  8. Tarek N, Azmy AF, Khairalla AS, Abdel-Fattah M, Jefri OA, Shaban M et al (2023) Genome sequencing of Enterococcus faecium NT04, an oral microbiota revealed the production of enterocin A/B active against oral pathogens. Heliyon 9:e16253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shahriar M, Haque MR, Kabir S, Dewan I, Bhuyian MA (2011) Effect of proteinase-K on genomic DNA extraction from gram-positive strains. Stamford J Pharm Sci 4:53–57

    Article  CAS  Google Scholar 

  10. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and and its applications to single-cell sequencing 19:455–77

  11. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) BIOINFORMATICS APPLICATIONS NOTE Genome analysis QUAST: quality assessment tool for genome assemblies 29:1072–1075

    CAS  Google Scholar 

  12. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T, Edwards RA et al (2008) The RAST Server: Rapid Annotations using Subsystems Technology 15:1–15

    Google Scholar 

  13. Seemann T (2014) Genome analysis Prokka: rapid prokaryotic genome annotation 2:1–2

    Google Scholar 

  14. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T et al (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:206–214

    Google Scholar 

  15. Sahbou AE, Iraqi D, Mentag R, Khayi S (2022) BuscoPhylo: a webserver for Busco-based phylogenomic analysis for non-specialists. Sci Rep 12:17352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Manni M, Berkeley MR, Seppey M, Zdobnov EM (2021) BUSCO: assessing genomic data quality and beyond. Curr Protoc 1:1–41

    Article  Google Scholar 

  17. Zdobnov EM, Kuznetsov D, Tegenfeldt F, Manni M, Berkeley M, Kriventseva EV (2021) OrthoDB in 2020: evolutionary and functional annotations of orthologs. Nucleic Acids Res 49:D389–D393

    Article  CAS  PubMed  Google Scholar 

  18. Edgar RC (2004) MUSCLE: multiple sequence alignment with improved accuracy and speed. Proc - 2004 IEEE Comput Syst Bioinforma Conf CSB 728–729

  19. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  21. Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huerta-Cepas J, Serra F, Bork P (2016) ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol 33:1635–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liang Q, Liu C, Xu R, Song M, Zhou Z, Li H (2021) fIDBAC: a platform for fast bacterial genome identification and typing 12:1–12

  24. El Jeni R, Ghedira K, El Bour M, Abdelhak S, Benkahla A, Bouhaouala-Zahar B (2020) High-quality genome sequence assembly of R.A73 Enterococcus faecium isolated from freshwater fish mucus. BMC Microbiol 20:1–12

    Google Scholar 

  25. Sylvere N, Mustopa AZ, Budiarti S, Meilina L, Hertati A, Handayani I (2023) Whole-genome sequence analysis and probiotic characteristics of Lactococcus lactis subsp. lactis strain Lac3 isolated from traditional fermented buffalo milk (Dadih). J Genet Eng Biotechnol 21

  26. Ghattargi VC, Gaikwad MA, Meti BS, Nimonkar YS, Dixit K, Prakash O et al (2018) Comparative genome analysis reveals key genetic factors associated with probiotic property in Enterococcus faecium strains. BMC Genomics 19

  27. Feito J, Contente D, Ponce-alonso M, Lara D, Ara C, Peña N et al (2022) Draft genome sequence of Lactococcus lactis subsp. cremoris WA2–67: a promising nisin-producing probiotic strain isolated from the rearing environment of a spanish rainbow trout (Oncorhynchus mykiss, Walbaum) farm. Microorganisms 10:251

  28. Fu X, Lyu L, Wang Y, Zhang Y, Guo X, Chen Q et al (2022) Microbial pathogenesis safety assessment and probiotic characteristics of Enterococcus lactis JDM1. Microb Pathog 163:105380

    Article  CAS  PubMed  Google Scholar 

  29. Olvera-garcía M, Sanchez-flores A, Baruch MQ (2018) Genomic and functional characterisation of two Enterococcus strains isolated from Cotija cheese and their potential role in ripening. Appl Microbiol Biotechnol 102:2251–2267

    Article  PubMed  Google Scholar 

  30. Bourgogne A, Hilsenbeck SG, Dunny GM, Murray BE (2006) Comparison of OG1RF and an isogenic fsrB deletion mutant by transcriptional analysis: the Fsr system of Enterococcus faecalis is more than the activator of gelatinase and serine protease. J Bacteriol 188:2875–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thurlow LR, Thomas VC, Fleming SD, Hancock LE (2009) Enterococcus faecalis capsular polysaccharide serotypes C and D and their contributions to host innate immune evasion. Infect Immun 77:5551–5557

    CAS  Google Scholar 

  32. Pancheniak E, de FR, Maziero MT, Rodriguez-León JA, Parada JL, Spier MR, Soccol CR (2012) Molecular characterisation and biomass and metabolite production of Lactobacillus reuteri LPB P01–001: a potential probiotic. Brazilian J Microbiol 135–147

  33. Natarajan P, Parani M (2014) First complete genome sequence of a probiotic Enterococcus faecium strain T-110 and its comparative genome analysis with pathogenic and non-pathogenic Enterococcus faecium genomes. J Genet Genomics 2–5

  34. Stergiou OS, Tegopoulos K, Kiousi DE et al (2021) Whole-genome sequencing, phylogenetic and genomic analysis of Lactiplantibacillus pentosus L33, a potential probiotic strain isolated from fermented sausages. Front Microbiol 12:1–13

    Article  Google Scholar 

  35. Walsham ADS, Mackenzie DA, Cook V, Wemyss-holden S, Hews CL, Juge N et al (2016) Lactobacillus reuteri inhibition of enteropathogenic Escherichia coli adherence to human intestinal epithelium. Front Microbol 7:1–10

    Google Scholar 

  36. Tuo Y, Song X, Song Y, Liu W, Tang Y, Gao Y et al (2018) Screening probiotics from Lactobacillus strains according to their abilities to inhibit pathogen adhesion and induction of pro-inflammatory cytokine IL-8. J Dairy Sci 101:4822–4829. https://doi.org/10.3168/jds.2017-13654

    Article  CAS  PubMed  Google Scholar 

  37. Chen C, Lai C, Huang H, Huang W, Evans BA, Lu Y (2019) Antimicrobial activity of Lactobacillus species against Enterobacteriaceae. Front Microbiol 10:1–10

    Google Scholar 

Download references

Acknowledgements

We would like to thank the UATRS genomics team at the CNRST center for carrying out the sequencing.

Funding

The present work was financially supported by the Hassan II Academy of Science and Technology and CNRST project PPR B 50.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Soumaya Ahadaf, Rachid Mentag, Mohamed Akram Errahmouni, and Amin Laglaoui. The first draft of the manuscript was written by Soumaya Ahadaf and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amin Laglaoui.

Ethics declarations

Ethics Approval

Not required.

Competing of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahadaf, S., Azzouz, S., Galiou, O.E. et al. Genomic Insights Into Enterococcus mundtii 203: A Promising Probiotic Candidate Isolated From Camel Feces. Probiotics & Antimicro. Prot. (2024). https://doi.org/10.1007/s12602-024-10284-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-024-10284-6

Keywords

Navigation