Skip to main content
Log in

Influence of Dietary Probiotic and Alpha-Monolaurin on Performance, Egg Quality, Blood Constituents, and Egg Fatty Acids’ Profile in Laying Hens

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

This work was designed to evaluate the advantages of using multi-strain probiotics feed (Bacillus subtilis, Bacillus licheniformis and Clostridium butyricum) (PRO) and alpha-monolaurin (AML) on laying performance, criteria of egg quality, blood parameters, and yolk fatty acids’ profile in laying hens. One hundred forty of Bovans brown laying hens at 45 weeks old (25th week of egg production) were randomly allocated into four groups, with seven replicates of five birds each in a complete randomized design. The first group was fed a basal diet without feed additives (0 g/kg diet), and the second, third, and fourth groups received diets containing 1 g PRO, 1 g AML, and 1 g PRO + 1 g AML/kg diet, respectively. No significant impacts of PRO, AML, or their mixture on body weight (BW), body weight gain (BWG), feed intake (FI), or egg weight. Egg production, egg mass, and feed conversion ratio (FCR) were enhanced by 1 g PRO/kg and /or 1 g AML/kg supplementation in laying hen diets. Furthermore, egg shape index, eggshell thickness, and yolk color were statistically higher by PRO and AML supplementation at 55 weeks. However, oviduct, infundibulum, and uterus weights were significantly decreased by 1 g PRO or/and 1 g AML. Additionally, total cholesterol, triglycerides, low density lipoprotein (LDL), glucose, and glutamate pyruvate transaminase (GPT) levels were decreased by PRO and AML supplementation. In conclusion, it seems that dietary inclusion with 1 g PRO/kg, 1 g of AML/kg, and 1 g PRO + 1 g AML improved egg production, egg mass, FCR, and yolk fatty acids profile and lowered total cholesterol and malondialdehyde (MDA) contents in laying hens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding authors.

References

  1. Gerzilov V, Nikolov A, Petrov P et al (2015) Effect of a dietary herbal mixture supplement on the growth performance, egg production and health status in chickens. J Cent Eur Agric 16:10–27. https://doi.org/10.5513/JCEA01/16.2.1580

    Article  Google Scholar 

  2. Ebeid TA, Eid YZ, El-Abd EA, El-Habbak MM (2008) Effects of catecholamines on ovary morphology, blood concentrations of estradiol-17β, progesterone, zinc, triglycerides and rate of ovulation in domestic hens. Theriogenology 69:870–876. https://doi.org/10.1016/j.theriogenology.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  3. Ebeid T, Eid Y, Saleh A, Abd El-Hamid H (2008) Ovarian follicular development, lipid peroxidation, antioxidative status and immune response in laying hens fed fish oil-supplemented diets to produce n-3-enriched eggs. Animal 2:84–91. https://doi.org/10.1017/S1751731107000882

    Article  CAS  PubMed  Google Scholar 

  4. Scicutella F, Mannelli F, Daghio M, Viti C, Buccioni A (2021) Polyphenols and organic acids as alternatives to antimicrobials in poultry rearing: a review. Antibiotics-Basel 10:1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liem A, Pesti GM, Edwards HM (2008) The effect of several organic acids on phytate phosphorus hydrolysis in broiler chicks. Poult Sci 87:689–693

    Article  CAS  PubMed  Google Scholar 

  6. Cherrington CA, Hinton M, Mead GC, Chopra I (1991) Organic acids: chemistry, antibacterial activity and practical applications. Adv Microb Physiol 32:87–108

    Article  CAS  PubMed  Google Scholar 

  7. Wistedt A, Ridderstrale Y, Wall H, Holm L (2014) Exogenous estradiol improves shell strength in laying hens at the end of the laying period. Acta Vet Scand 56:34

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang YN, Zhang HJ, Wang J, Yue HY, Qi XL, Wu SG, Qi GH (2017) Effect of dietary supplementation of organic or inorganic zinc on carbonic anhydrase activity in eggshell formation and quality of aged laying hens. Poult Sci 96:2176–2183

    Article  CAS  PubMed  Google Scholar 

  9. Swiatkiewicz S, Arczewska-Wlosek A (2012) Prebiotic fructans and organic acids as feed additives improving mineral availability. World Poult Sci J 68:269–279

    Article  Google Scholar 

  10. Fuller R (1989) Probiotics in man and animals. J Appl Microbiol 66:365–378

    CAS  Google Scholar 

  11. European F (2007) Safety, and Authority Introduction of a qualified presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA-Opinion of the Scientific Committee. EFSA J 587:1–16

    Google Scholar 

  12. Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA (2021) Multi-strain probiotics: synergy among isolates enhances biological activities. Biology (Basel) 10:322. https://doi.org/10.3390/biology10040322

    Article  CAS  PubMed  Google Scholar 

  13. Al-Sagan AA, AL-Yemni AH, Al-Abdullatif AA et al (2020) Effects of different dietary levels of Blue Lupine (Lupinus angustifolius) seed meal with or without probiotics on the performance, Carcass Criteria, Immune organs, and gut morphology of broiler chickens. Front Vet Sci 7:124. https://doi.org/10.3389/fvets.2020.00124

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shehata AA, Yalçın S, Latorre JD et al (2022) Probiotics, Prebiotics, and Phytogenic substances for optimizing Gut Health in Poultry. Microorganisms 10:395. https://doi.org/10.3390/microorganisms10020395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fathi M, Al-Homidan I, Al-Dokhail A et al (2018) Effects of dietary probiotic (Bacillus subtilis) supplementation on productive performance, immune response and egg quality characteristics in laying hens under high ambient temperature. Ital J Anim Sci 17:804–814. https://doi.org/10.1080/1828051X.2018.1425104

    Article  CAS  Google Scholar 

  16. Xiang Q, Wang C, Zhang H et al (2019) Effects of different probiotics on laying performance, egg quality, oxidative status, and gut health in laying hens. Animals 9:1110. https://doi.org/10.3390/ani9121110

    Article  PubMed  PubMed Central  Google Scholar 

  17. Saleh AA, Kirrella AA, Dawood MAO, Ebeid TA (2019) Effect of dietary inclusion of cumin seed oil on the performance, egg quality, immune response and ovarian development in laying hens under high ambient temperature. J Anim Physiol Anim Nutr (Berl) 103:1810–1817. https://doi.org/10.1111/jpn.13206

    Article  CAS  PubMed  Google Scholar 

  18. Saleh AA, Abudabos AM, Ali MH, Ebeid TA (2019) The effects of replacing corn with low-tannin sorghum in broiler’s diet on growth performance, nutrient digestibilities, lipid peroxidation and gene expressions related to growth and antioxidative properties. J Appl Anim Res 47:532–539. https://doi.org/10.1080/09712119.2019.1680377

    Article  CAS  Google Scholar 

  19. Alaqil AA, Abbas AO, El-Beltagi HS et al (2020) Dietary supplementation of probiotic Lactobacillus acidophilus modulates cholesterol levels, Immune Response, and productive performance of laying hens. Animals 10:1588. https://doi.org/10.3390/ani10091588

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fahmy ZH, Aly E, Shalsh I, Mohamed AH (2014) The effect of medium chain saturated fatty acid (monolaurin) on levels of the cytokines on experimental animal in Entamoeba histolytica and Giardia lamblia infection. Afr J Pharm Pharmacol 8:106–114. https://doi.org/10.5897/AJPP2013.3839

    Article  CAS  Google Scholar 

  21. Zentek J, Buchheit-Renko S, Ferrara F et al (2011) Nutritional and physiological role of medium-chain triglycerides and medium-chain fatty acids in piglets. Anim Heal Res Rev 12:83–93. https://doi.org/10.1017/S1466252311000089

    Article  CAS  Google Scholar 

  22. Saleh AA, El-Gharabawy B, Hassan A et al (2021) Effect of Dietary inclusion of Alpha-Monolaurin on the growth performance, lipid peroxidation, and immunity response in Broilers. Sustainability 13:5231. https://doi.org/10.3390/su13095231

    Article  CAS  Google Scholar 

  23. Isaacs CE, Thormar H, Pessolano T (1986) Membrane-disruptive effect of human milk: inactivation of enveloped viruses. J Infect Dis 154:966–971. https://doi.org/10.1093/infdis/154.6.966

    Article  CAS  PubMed  Google Scholar 

  24. Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP (1972) Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother 2:23–28. https://doi.org/10.1128/AAC.2.1.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ettinger M (2005) Antiviral and antibacterial actions of Monolaurin and Lauric Acid. Mol Cell Biochem 272:29–34

    Google Scholar 

  26. Mustafa NG (2019) Biochemical Trails Associated with different doses of Alpha-Monolaurin in chicks. Adv Anim Vet Sci 7:187–192. https://doi.org/10.17582/journal.aavs/2019/7.3.187.192

    Article  Google Scholar 

  27. Londok JJMR, Sumiati S, Wiryawan IKG, Manalu W (2018) Antioxidant enzyme activity and Malondialdehyde Concentration on Broiler Fed Contain Lauric Acid and Areca Vestiaria Giseke. Bul Peternak 42:109–114. https://doi.org/10.21059/buletinpeternak.v42i2.31767

    Article  Google Scholar 

  28. Fortuoso BF, dos Reis JH, Gebert RR et al (2019) Glycerol monolaurate in the diet of broiler chickens replacing conventional antimicrobials: impact on health, performance and meat quality. Microb Pathog 129:161–167. https://doi.org/10.1016/j.micpath.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  29. Preuss HG, Echard B, Enig M et al (2005) Minimum inhibitory concentrations of herbal essential oils and monolaurin for gram-positive and gram-negative bacteria. Mol Cell Biochem 272:29–34. https://doi.org/10.1007/s11010-005-6604-1

    Article  CAS  PubMed  Google Scholar 

  30. Zhao M, Cai H, Liu M et al (2019) Dietary glycerol monolaurate supplementation for the modification of functional properties of egg white protein. J Sci Food Agric 99:3852–3859. https://doi.org/10.1002/jsfa.9607

    Article  CAS  PubMed  Google Scholar 

  31. Liu T, Li C, Li Y, Feng F (2020) Glycerol monolaurate enhances reproductive performance, egg quality and albumen amino acids composition in aged hens with gut microbiota alternation. Agriculture 10:250. https://doi.org/10.3390/agriculture10070250

    Article  CAS  Google Scholar 

  32. Renema RA, Robinson FE, Melnychuk VL et al (1995) The use of feed restriction for improving Reproductive traits in Male-Line Large White Turkey Hens. Poult Sci 74:102–120. https://doi.org/10.3382/ps.0740102

    Article  CAS  PubMed  Google Scholar 

  33. Saleh AA, Ahmed EAM, Ebeid TA (2019) The impact of phytoestrogen source supplementation on reproductive performance, plasma profile, yolk fatty acids and antioxidative status in aged laying hens. Reprod Domest Anim 54:846–854. https://doi.org/10.1111/rda.13432

    Article  CAS  PubMed  Google Scholar 

  34. Radwan SS (1978) Coupling of two-dimensional thin-layer chromatography with gas chromatography for the quantitative analysis of lipid classes and their constituent fatty acids. J Chromatogr Sci 16:538–542. https://doi.org/10.1093/chromsci/16.11.538

    Article  CAS  Google Scholar 

  35. Saleh AA, Eltantawy MS, Gawish EM et al (2020) Impact of Dietary Organic Mineral supplementation on Reproductive Performance, Egg Quality characteristics, lipid oxidation, ovarian Follicular Development, and Immune Response in laying hens under high ambient temperature. Biol Trace Elem Res 195:506–514. https://doi.org/10.1007/s12011-019-01861-w

    Article  CAS  PubMed  Google Scholar 

  36. Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride – methanol. J Lipid Res 53:600–608

    Article  Google Scholar 

  37. Ebeid TA, Al-Homidan IH, Fathi MM (2021) Physiological and immunological benefits of probiotics and their impacts in poultry productivity. Worlds Poult Sci J 77:883–899. https://doi.org/10.1080/00439339.2021.1960239

    Article  Google Scholar 

  38. Alagawany M, Bassiony SS, El-Kholy MS et al (2023) Comparison of the effects of probiotic-based formulations on growth, feed utilization, blood constituents, cecal fermentation, and duodenal morphology of rabbits reared under hot environmental conditions. Ann Anim Sci 23:777–787. https://doi.org/10.2478/aoas-2023-0004

    Article  CAS  Google Scholar 

  39. Lieberman S, Enig MG, Preuss HG (2006) A review of monolaurin and lauric acid: natural virucidal and bactericidal agents. Altern Complement Ther 12:310–314

    Article  Google Scholar 

  40. Wang C, Shan H, Chen H et al (2023) Probiotics and vitamins modulate the cecal microbiota of laying hens submitted to induced molting. Front Microbiol. https://doi.org/10.3389/fmicb.2023.1180838

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kurtoglu V, Kurtoglu F, Seker E et al (2004) Effect of probiotic supplementation on laying hen diets on yield performance and serum and egg yolk cholesterol. Food Addit Contam 21:817–823. https://doi.org/10.1080/02652030310001639530

    Article  CAS  PubMed  Google Scholar 

  42. Nahashon SN, Nakaue HS, Mirosh LW (1994) Production Variables and Nutrient Retention in Single Comb White Leghorn Laying Pullets Fed diets supplemented with direct-Fed microbials. Poult Sci 73:1699–1711. https://doi.org/10.3382/ps.0731699

    Article  CAS  PubMed  Google Scholar 

  43. Nahashon SN, Nakaue HS, Mirosh LW (1996) Nutrient retention and production parameters of single comb White Leghorn layers fed diets with varying crude protein levels and supplemented with direct-fed microbials. Anim Feed Sci Technol 61:17–26. https://doi.org/10.1016/0377-8401(96)00956-X

    Article  CAS  Google Scholar 

  44. Liu T, Tang J, Feng F (2020) Medium-chain α-monoglycerides improves productive performance and egg quality in aged hens associated with gut microbiota modulation. Poult Sci 99:7122–7132. https://doi.org/10.1016/j.psj.2020.07.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang L, Zhang R, Jia H et al (2021) Supplementation of probiotics in water beneficial growth performance, carcass traits, immune function, and antioxidant capacity in broiler chickens. Open Life Sci 16:311–322. https://doi.org/10.1515/biol-2021-0031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kirrella AA, Abdo SE, El-Naggar K et al (2021) Use of corn silk meal in broiler diet: Effect on growth performance, blood biochemistry, immunological responses, and growth-related gene expression. Animals 11:1170. https://doi.org/10.3390/ani11041170

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xu H, Lu Y, Li D et al (2023) Probiotic mediated intestinal microbiota and improved performance, egg quality and ovarian immune function of laying hens at different laying stage. Front Microbiol. https://doi.org/10.3389/fmicb.2023.1041072

    Article  PubMed  PubMed Central  Google Scholar 

  48. Getachew T, Hawaz E, Ameha N, Guesh T (2016) Effect of probiotic Lactobacillus species supplementation on productive traits of White Leghorn Chicken. J World Poult Res 6:199–204

    Google Scholar 

  49. Saleh AA, Gálik B, Arpášová H et al (2017) Synergistic effect of feeding aspergillus awamori and lactic acid bacteria on performance, egg traits, egg yolk cholesterol and fatty acid profile in laying hens. Ital J Anim Sci 16:132–139. https://doi.org/10.1080/1828051X.2016.1269300

    Article  CAS  Google Scholar 

  50. Forte C, Moscati L, Acuti G et al (2016) Effects of dietary Lactobacillus acidophilus and Bacillus subtilis on laying performance, egg quality, blood biochemistry and immune response of organic laying hens. J Anim Physiol Anim Nutr (Berl) 100:977–987. https://doi.org/10.1111/jpn.12408

    Article  CAS  PubMed  Google Scholar 

  51. Ebeid T, Al-Homidan I, Fathi M et al (2021) Impact of probiotics and/or organic acids supplementation on growth performance, microbiota, antioxidative status, and immune response of broilers. Ital J Anim Sci 20:2263–2273. https://doi.org/10.1080/1828051X.2021.2012092

    Article  CAS  Google Scholar 

  52. Panda AK, Rama Rao SV, Raju MVLN, Sharma SR (2006) Dietary supplementation of Lactobacillus Sporogenes on performance and serum biochemico - lipid Profile of broiler chickens. J Poult Sci 43:235–240. https://doi.org/10.2141/jpsa.43.235

    Article  CAS  Google Scholar 

  53. Panda AK, Rama Rao SS, Raju MVLN, Sharma SS (2008) Effect of probiotic (Lactobacillus sporogenes) feeding on egg production and quality, yolk cholesterol and humoral immune response of White Leghorn layer breeders. J Sci Food Agric 88:43–47. https://doi.org/10.1002/jsfa.2921

    Article  CAS  Google Scholar 

  54. Tang SGH, Sieo CC, Ramasamy K et al (2017) Performance, biochemical and haematological responses, and relative organ weights of laying hens fed diets supplemented with prebiotic, probiotic and synbiotic. BMC Vet Res 13:248. https://doi.org/10.1186/s12917-017-1160-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang J, Wang X, Li J et al (2015) Effects of Dietary Coconut Oil as a medium-chain fatty acid source on performance, Carcass Composition and serum lipids in male broilers. Asian-Australasian J Anim Sci 28:223–230. https://doi.org/10.5713/ajas.14.0328

    Article  CAS  Google Scholar 

  56. Abd El-Moneim EA, El-Wardany I, Abu-Taleb AM et al (2020) Assessment of in Ovo Administration of Bifidobacterium bifidum and Bifidobacterium longum on performance, Ileal Histomorphometry, Blood Hematological, and Biochemical Parameters of Broilers. Probiotics Antimicrob Proteins 12:439–450. https://doi.org/10.1007/s12602-019-09549-2

    Article  CAS  PubMed  Google Scholar 

  57. Baltić B, Ćirić J, Šefer D et al (2018) Effect of dietary supplementation with medium chain fatty acids on growth performance, intestinal histomorphology, lipid profile and intestinal microflora of broiler chickens. S Afr J Anim Sci 48:885. https://doi.org/10.4314/sajas.v48i5.8

    Article  CAS  Google Scholar 

  58. Tsitsigiannis DI, Zarnowski R, Keller NP (2004) The lipid body protein, PpoA, coordinates sexual and asexual sporulation in aspergillus nidulans. J Biol Chem 279:11344–11353. https://doi.org/10.1074/jbc.M310840200

    Article  CAS  PubMed  Google Scholar 

  59. Saleh A, Hayashi K, Ohtsuka A (2013) Synergistic effect of feeding Aspergillus Awamori and Saccharomyces Cerevisiae on Growth performance in broiler chickens; Promotion of protein metabolism and modification of fatty acid Profile in the muscle. J Poult Sci 50:242–250. https://doi.org/10.2141/jpsa.0120153

    Article  CAS  Google Scholar 

  60. Saleh AA, Amber K, El-Magd MA et al (2014) Integrative effects of feeding aspergillus awamori and fructooligosaccharide on growth performance and digestibility in Broilers: Promotion muscle protein metabolism. Biomed Res Int 2014:1–8. https://doi.org/10.1155/2014/946859

    Article  Google Scholar 

  61. El-Kholy MS, El-Mekkawy MM, Madkour M et al (2023) The role of different dietary zn sources in modulating heat stress-related effects on some thermoregulatory parameters of New Zealand white rabbit bucks*. Anim Biotechnol 34:1273–1282. https://doi.org/10.1080/10495398.2021.2019757

    Article  CAS  PubMed  Google Scholar 

  62. Madkour M, Salman FM, El-Wardany I et al (2022) Mitigating the detrimental effects of heat stress in poultry through thermal conditioning and nutritional manipulation. J Therm Biol 103:103169. https://doi.org/10.1016/j.jtherbio.2021.103169

    Article  CAS  PubMed  Google Scholar 

  63. Batool F, Bilal RM, Hassan FU et al (2023) An updated review on behavior of domestic quail with reference to the negative effect of heat stress. Anim Biotechnol 34:424–437. https://doi.org/10.1080/10495398.2021.1951281

    Article  CAS  PubMed  Google Scholar 

  64. Gaetani GF, Ferraris AM, Rolfo M et al (1996) Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 87:1595–1599. https://doi.org/10.1182/blood.v87.4.1595.bloodjournal8741595

    Article  CAS  PubMed  Google Scholar 

  65. Wang H, Ni X, Qing X et al (2018) Probiotic Lactobacillus johnsonii BS15 improves blood parameters related to immunity in Broilers experimentally infected with subclinical necrotic enteritis. Front Microbiol 9:49. https://doi.org/10.3389/fmicb.2018.00049

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Researchers Supporting Project (RSPD2024R731), King Saud University (Riyadh, Saudi Arabia).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all works conducted in the present study. All authors have drafted, reviewed, revised, and approved the final manuscript.

Corresponding authors

Correspondence to Ahmed A. Saleh or Mahmoud Alagawany.

Ethics declarations

Ethical Approval

The experiment was accepted by the Ethics Committee of the Local Experimental Animals Care Committee and performed under the guidelines of the Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Egypt (Number 4/2016 EC).

Consent to Participate

Not applicable.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, A.A., Galosi, L., Metwally, M. et al. Influence of Dietary Probiotic and Alpha-Monolaurin on Performance, Egg Quality, Blood Constituents, and Egg Fatty Acids’ Profile in Laying Hens. Probiotics & Antimicro. Prot. (2024). https://doi.org/10.1007/s12602-024-10260-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-024-10260-0

Keywords

Navigation