Skip to main content
Log in

In Vitro Profiling of Potential Fish Probiotics, Enterococcus hirae Strains, Isolated from Jade Perch, and Safety Properties Assessed Using Whole Genome Sequencing

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The demands of intensified aquaculture production and escalating disease prevalence underscore the need for efficacious probiotic strategies to enhance fish health. This study focused on isolating and characterising potential probiotics from the gut microbiota of the emerging aquaculture species jade perch (Scortum barcoo). Eighty-seven lactic acid bacteria and 149 other bacteria were isolated from the digestive tract of five adult jade perch. The screening revealed that 24 Enterococcus hirae isolates inhibited the freshwater pathogens Aeromonas sobria and Streptococcus iniae. Co-incubating E. hirae with the host gut suspensions demonstrated a two- to five-fold increase in the size of growth inhibition zones compared to the results when using gut suspensions from tilapia (a non-host), indicating host-specificity. Genome analysis of the lead isolate, E. hirae R44, predicted the presence of antimicrobial compounds like enterolysin A, class II lanthipeptide, and terpenes, which underlay its antibacterial attributes. Isolate R44 exhibited desirable probiotic characteristics, including survival at pH values within the range of 3 to 12, bile tolerance, antioxidant activity, ampicillin sensitivity, and absence of transferable antimicrobial resistance genes and virulence factors commonly associated with hospital Enterococcus strains (IS16, hylEfm, and esp). This study offers a foundation for sourcing host-adapted probiotics from underexplored aquaculture species. Characterisation of novel probiotics like E. hirae R44 can expedite the development of disease mitigation strategies to support aquaculture intensification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The raw fastq data of E. hirae R44 is available at https://www.ncbi.nlm.nih.gov/sra/PRJNA1013729 with accession number PRJNA1013729.

Abbreviations

RAS:

Recirculating aquaculture system

LAB:

Lactic acid bacteria

BSC:

Biosafety cabinet

PBS:

Phosphate-buffered saline

MRS:

Man, Rogosa, and Sharpe

TSA:

Tryptic soy agar

WCA:

Wilkins-Chalgren anaerobe agar

WCB:

Wilkins-Chalgren anaerobe broth

OD:

Optical density

TSB:

Tryptic soy broth

BHI:

Brain heart infusion

NCBI:

National Centre for Biotechnology Information

BLAST:

Basic Local Alignment Search Tool

CFU:

Colony forming units

BSH:

Bile salt hydrolase

TDC:

Taurodeoxycholate

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

AA%:

Antioxidant activity percentage

WGS:

Whole genome sequencing

bp:

Base pair

QC:

Quality control

AMR:

Antimicrobial resistance

MGEs:

Mobile genetic elements

BGCs:

Biosynthetic gene clusters

VFDB:

Virulence factor database

antiSMASH5:

Antibiotics and Secondary Metabolite Analysis Shell 5.0

BAGEL:

Bacteriocins and RiPP—Ribosomally synthesised and Post-translationally modified Peptides

MIC:

Minimum inhibitory concentration

CLSI:

Clinical and Laboratory Standards Institute

PKSs:

Polyketide synthases

QPS:

Qualified Presumption of Safety

EFSA:

European Food Safety Authority

GRAS:

Generally recognised as safe

EPS:

Exopolysaccharide

References

  1. Van Hoestenberghe S, Goddeeris B, Roelants I, Vermeulen D (2013) Total replacement of fish oil with vegetable oils in the diet of juvenile jade perch Scortum barcoo reared in recirculating aquaculture systems. Journal of Agricultural Science and Technology. B 3(5):385–398

    Google Scholar 

  2. Mooney BD, Nichols PD, Elliott NG, Fisheries Research and Development Corporation (Australia), CSIRO. Division of Marine Research (2002) Seafood the good food II: the oil content and composition of Australian commercial finfish, shellfishes and factors affecting edible species. CSIRO Division of Marine Research, Hobart; Fisheries Research and Development Corporation, Deakin, A.C.T. https://catalogue.nla.gov.au/catalog/1681514

  3. Kayansamruaj P, Areechon N, Unajak S (2020) Development of fish vaccine in Southeast Asia: a challenge for the sustainability of SE Asia aquaculture. Fish Shellfish Immunol 103:73–87

    Article  CAS  PubMed  Google Scholar 

  4. Liu L et al (2014) Outbreak of Streptococcus agalactiae infection in barcoo grunter, Scortum barcoo (McCulloch & Waite), in an intensive fish farm in China. J Fish Dis 37(12):1067–1072. https://doi.org/10.1111/jfd.12187

    Article  CAS  PubMed  Google Scholar 

  5. Kayansamruaj P et al (2017) Outbreaks of ulcerative disease associated with ranavirus infection in barcoo grunter, Scortum barcoo (McCulloch & Waite). J Fish Dis 40(10):1341–1350. https://doi.org/10.1111/jfd.12606

    Article  CAS  PubMed  Google Scholar 

  6. Chan SCH et al (2024) Thyroid neoplasia associated with nutritional deficiency in cultured jade perch in Hong Kong. J Vet Diagn Invest. https://doi.org/10.1177/10406387231218733

    Article  PubMed  Google Scholar 

  7. Wahli T, Burr SE, Pugovkin D, Mueller O, Frey J (2005) Aeromonas sobria, a causative agent of disease in farmed perch, Perca fluviatilis L. J Fish Dis 28(3):141–150. https://doi.org/10.1111/j.1365-2761.2005.00608.x

    Article  CAS  PubMed  Google Scholar 

  8. Liu X et al (2020) Impact of Aeromonas hydrophila and infectious spleen and kidney necrosis virus infections on susceptibility and host immune response in Chinese perch (Siniperca chuatsi). Fish Shellfish Immunol 105:117–125. https://doi.org/10.1016/j.fsi.2020.07.012

    Article  CAS  PubMed  Google Scholar 

  9. Chauhan A, Singh R (2019) Probiotics in aquaculture: a promising emerging alternative approach. Symbiosis 77(2):99–113. https://doi.org/10.1007/s13199-018-0580-1

    Article  Google Scholar 

  10. Fečkaninová A, Koščová J, Mudroňová D, Popelka P, Toropilová J (2017) The use of probiotic bacteria against Aeromonas infections in salmonid aquaculture. Aquaculture 469:1–8. https://doi.org/10.1016/j.aquaculture.2016.11.042

    Article  Google Scholar 

  11. LaPatra SE, Fehringer TR, Cain KD (2014) A probiotic Enterobacter sp. provides significant protection against Flavobacterium psychrophilum in rainbow trout (Oncorhynchus mykiss) after injection by two different routes. Aquaculture 433:361–366. https://doi.org/10.1016/j.aquaculture.2014.06.022

    Article  Google Scholar 

  12. Sanches-Fernandes GMM, Sá-Correia I, Costa R (2022) Vibriosis outbreaks in aquaculture: addressing environmental and public health concerns and preventive therapies using gilthead seabream farming as a model system. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2022.904815

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ringoe E, Li X, Doan H, Ghosh K (2022) Interesting probiotic bacteria other than the more widely used lactic acid bacteria and bacilli in finfish. Front Mar Sci. https://doi.org/10.3389/fmars.2022.848037

    Article  Google Scholar 

  14. Martínez Cruz P, Ibáñez AL, Monroy Hermosillo OA, Ramírez Saad HC (2012) Use of probiotics in aquaculture. ISRN Microbiol 2012:916845. https://doi.org/10.5402/2012/916845

    Article  PubMed  PubMed Central  Google Scholar 

  15. Banerjee G, Ray AK (2017) The advancement of probiotics research and its application in fish farming industries. Res J Vet Sci 115:66–77. https://doi.org/10.1016/j.rvsc.2017.01.016

    Article  CAS  Google Scholar 

  16. Gomez D, Sunyer JO, Salinas I (2013) The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immunol 35(6):1729–1739. https://doi.org/10.1016/j.fsi.2013.09.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lazado CC, Caipang CMA, Estante EG (2015) Prospects of host-associated microorganisms in fish and penaeids as probiotics with immunomodulatory functions. Fish Shellfish Immunol 45(1):2–12. https://doi.org/10.1016/j.fsi.2015.02.023

    Article  CAS  PubMed  Google Scholar 

  18. Van Doan H et al (2020) Host-associated probiotics: a key factor in sustainable aquaculture. Rev Fish Sci Aquac 28(1):16–42. https://doi.org/10.1080/23308249.2019.1643288

    Article  Google Scholar 

  19. Borges N, Keller-Costa T, Sanches-Fernandes GMM, Louvado A, Gomes NCM, Costa R (2021) Bacteriome structure, function, and probiotics in fish larviculture: the good, the bad, and the gaps. Annu Rev Anim Biosci 9:423–452. https://doi.org/10.1146/annurev-animal-062920-113114

    Article  CAS  PubMed  Google Scholar 

  20. He S et al (2009) Effects of dietary Saccharomyces cerevisiae fermentation product (DVAQUA®) on growth performance, intestinal autochthonous bacterial community and non-specific immunity of hybrid tilapia (Oreochromis niloticus ♀×O. aureus ♂) cultured in cages. Aquaculture 294(1):99–107. https://doi.org/10.1016/j.aquaculture.2009.04.043

    Article  Google Scholar 

  21. Rubio R, Jofré A, Martín B, Aymerich T, Garriga M (2014) Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages. Food Microbiol 38:303–311. https://doi.org/10.1016/j.fm.2013.07.015

    Article  CAS  PubMed  Google Scholar 

  22. González L, Sandoval H, Sacristán N, Castro JM, Fresno JM, Tornadijo ME (2007) Identification of lactic acid bacteria isolated from Genestoso cheese throughout ripening and study of their antimicrobial activity. Food Control 18(6):716–722. https://doi.org/10.1016/j.foodcont.2006.03.008

    Article  CAS  Google Scholar 

  23. van der Linde K, Lim BT, Rondeel JMM, Antonissen LPMT, de Jong GMT (1999) Improved bacteriological surveillance of haemodialysis fluids: a comparison between tryptic soy agar and Reasoner’s 2A media. Nephrol Dial Transplant 14(10):2433–2437. https://doi.org/10.1093/ndt/14.10.2433

    Article  PubMed  Google Scholar 

  24. Namavar F et al (1989) Epidemiology of the Bacteroides fragilis group in the colonic flora in 10 patients with colonic cancer. J Med Microbiol 29(3):171–176. https://doi.org/10.1099/00222615-29-3-171

    Article  CAS  PubMed  Google Scholar 

  25. Ayala DI et al (2019) A systematic approach to identify and characterize the effectiveness and safety of novel probiotic strains to control foodborne pathogens. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01108

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tan LL, Tan CH, Ng NKJ, Tan YH, Conway PL, Loo SCJ (2022) Potential probiotic strains from milk and water kefir grains in Singapore-use for defense against enteric bacterial pathogens. Front Microbiol 13:857720. https://doi.org/10.3389/fmicb.2022.857720

    Article  PubMed  PubMed Central  Google Scholar 

  27. Moman R, O’Neill CA, Ledder RG, Cheesapcharoen T, McBain AJ (2020) Mitigation of the toxic effects of periodontal pathogens by candidate probiotics in oral keratinocytes, and in an invertebrate model. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00999

    Article  PubMed  PubMed Central  Google Scholar 

  28. Davis MW, Jorgensen EM (2022) ApE, a plasmid editor: a freely available DNA manipulation and visualization program. Front Bioinform. https://doi.org/10.3389/fbinf.2022.818619

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chandel D, Sharma M, Chawla V, Sachdeva N, Shukla G (2019) Isolation, characterization and identification of antigenotoxic and anticancerous indigenous probiotics and their prophylactic potential in experimental colon carcinogenesis. Sci Rep 9(1):14769. https://doi.org/10.1038/s41598-019-51361-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Michael DR, Moss JW, Calvente DL, Garaiova I, Plummer SF, Ramji DP (2016) Lactobacillus plantarum CUL66 can impact cholesterol homeostasis in Caco-2 enterocytes. Benef Microbes 7(3):443–451. https://doi.org/10.3920/bm2015.0146

    Article  CAS  PubMed  Google Scholar 

  31. Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48(4):412–422. https://doi.org/10.1007/s13197-011-0251-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zerbino DR, McEwen GK, Margulies EH, Birney E (2009) Pebble and rock band: heuristic resolution of repeats and scaffolding in the velvet short-read de novo assembler. PLoS ONE 4(12):e8407. https://doi.org/10.1371/journal.pone.0008407

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829. https://doi.org/10.1101/gr.074492.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W (2010) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27(4):578–579. https://doi.org/10.1093/bioinformatics/btq683

    Article  CAS  PubMed  Google Scholar 

  35. Hunt M, Newbold C, Berriman M, Otto TD (2014) A comprehensive evaluation of assembly scaffolding tools. Genome Biol 15(3):R42. https://doi.org/10.1186/gb-2014-15-3-r42

    Article  PubMed  PubMed Central  Google Scholar 

  36. Boetzer M, Pirovano W (2012) Toward almost closed genomes with GapFiller. Genome Biol 13(6):R56. https://doi.org/10.1186/gb-2012-13-6-r56

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hasman H et al (2014) Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J Clin Microbiol 52(1):139–146

    Article  PubMed  PubMed Central  Google Scholar 

  38. Larsen MV et al (2014) Benchmarking of methods for genomic taxonomy. J Clin Microbiol 52(5):1529–1539

    Article  PubMed  PubMed Central  Google Scholar 

  39. Clausen PT, Aarestrup FM, Lund O (2018) Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinform 19:1–8

    Article  Google Scholar 

  40. Bortolaia V et al (2020) ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 75(12):3491–3500. https://doi.org/10.1093/jac/dkaa345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM (2017) PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother 72(10):2764–2768. https://doi.org/10.1093/jac/dkx217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Camacho C et al (2009) BLAST+: architecture and applications. BMC Bioinform 10(1):421. https://doi.org/10.1186/1471-2105-10-421

    Article  MathSciNet  CAS  Google Scholar 

  43. Joensen KG et al (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52(5):1501–1510. https://doi.org/10.1128/jcm.03617-13

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tetzschner AMM, Johnson JR, Johnston BD, Lund O, Scheutz F (2020) In silico genotyping of Escherichia coli isolates for extraintestinal virulence genes by use of whole-genome sequencing data. J Clin Microbiol. https://doi.org/10.1128/jcm.01269-20

    Article  Google Scholar 

  45. Liu B, Zheng D, Zhou S, Chen L, Yang J (2021) VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res 50(D1):D912–D917. https://doi.org/10.1093/nar/gkab1107

    Article  CAS  PubMed Central  Google Scholar 

  46. Carattoli A et al (2014) In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58(7):3895–3903. https://doi.org/10.1128/aac.02412-14

    Article  PubMed  PubMed Central  Google Scholar 

  47. Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP, Petersen TN (2020) Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J Antimicrob Chemother 76(1):101–109. https://doi.org/10.1093/jac/dkaa390

    Article  CAS  PubMed Central  Google Scholar 

  48. Blin K et al (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47(W1):W81–W87. https://doi.org/10.1093/nar/gkz310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP (2018) BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 46(W1):W278–W281. https://doi.org/10.1093/nar/gky383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin X et al (2018) Lactic acid bacteria with antioxidant activities alleviating oxidized oil induced hepatic injury in mice. Front Microbiol. Retrieved on November 21, 2023 https://doi.org/10.3389/fmicb.2018.02684

  51. Kachouri F, Ksontini H, Kraiem M, Setti K, Mechmeche M, Hamdi M (2015) Involvement of antioxidant activity of Lactobacillus plantarum on functional properties of olive phenolic compounds. J Food Sci Technol 52(12):7924–7933. https://doi.org/10.1007/s13197-015-1912-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175. https://doi.org/10.1038/nprot.2007.521

    Article  CAS  PubMed  Google Scholar 

  53. Ahmed MO, Baptiste KE (2018) Vancomycin-resistant enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb Drug Resist 24(5):590–606. https://doi.org/10.1089/mdr.2017.0147

  54. Murray BE, Miller WR (2018) Treatment of enterococcal infections. UpToDate: Waltham, MA, USA, available online: https://www.uptodate.com/contents/treatment-of-enterococcal-infections. Accessed on 11 Nov 2023

  55. Clinical and Laboratory Standards Institute (CLSI) (2023) Performance standards for antimicrobial susceptibility testing, 33rd edn. CLSI supplement M100 (ISBN 978-1-68440-170-3[Print]; ISBN 978-1-68440-171-0 [Electronic]). Clinical and Laboratory Standards Institute, USA. https://clsi.org/media/tc4b1paf/m10033_samplepages-1.pdf

  56. on Additives EP et al (2018) Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA Journal 16(3):e05206. https://doi.org/10.2903/j.efsa.2018.5206

    Article  Google Scholar 

  57. Ben Braïek O, Smaoui S (2019) Enterococci: between emerging pathogens and potential probiotics. Biomed Res Int 2019:5938210. https://doi.org/10.1155/2019/5938210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Franz CMAP, Huch M, Abriouel H, Holzapfel W, Gálvez A (2011) Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 151(2):125–140. https://doi.org/10.1016/j.ijfoodmicro.2011.08.014

    Article  CAS  PubMed  Google Scholar 

  59. Fajardo P, Atanassova M, Garrido-Maestu A, Wortner-Smith T, Cotterill J, Cabado AG (2014) Bacteria isolated from shellfish digestive gland with antipathogenic activity as candidates to increase the efficiency of shellfish depuration process. Food Control 46:272–281. https://doi.org/10.1016/j.foodcont.2014.05.038

    Article  CAS  Google Scholar 

  60. Prichula J et al (2021) Genome mining for antimicrobial compounds in wild marine animals-associated enterococci. Marine Drugs 19(6):328. https://www.mdpi.com/1660-3397/19/6/328

  61. Cavicchioli VQ, Camargo AC, Todorov SD, Nero LA (2017) Novel bacteriocinogenic Enterococcus hirae and Pediococcus pentosaceus strains with antilisterial activity isolated from Brazilian artisanal cheese. J Dairy Sci 100(4):2526–2535. https://doi.org/10.3168/jds.2016-12049

    Article  CAS  PubMed  Google Scholar 

  62. Adnan M, Patel M, Hadi S (2017) Functional and health promoting inherent attributes of Enterococcus hirae F2 as a novel probiotic isolated from the digestive tract of the freshwater fish Catla catla. PeerJ 5:e3085. https://doi.org/10.7717/peerj.3085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gupta A, Tiwari SK (2015) Probiotic potential of bacteriocin-producing Enterococcus hirae strain LD3 isolated from dosa batter. Ann Microbiol 65(4):2333–2342. https://doi.org/10.1007/s13213-015-1075-4

    Article  CAS  Google Scholar 

  64. Punia Bangar S, Suri S, Trif M, Ozogul F (2022) Organic acids production from lactic acid bacteria: a preservation approach. Food Biosci 46:101615. https://doi.org/10.1016/j.fbio.2022.101615

    Article  CAS  Google Scholar 

  65. El-Saadony MT et al (2021) The functionality of probiotics in aquaculture: an overview. Fish Shellfish Immunol 117:36–52. https://doi.org/10.1016/j.fsi.2021.07.007

    Article  PubMed  Google Scholar 

  66. de Melo Pereira GV, de Oliveira Coelho B, Magalhães Júnior AI, Thomaz-Soccol V, Soccol CR (2018) How to select a probiotic? A review and update of methods and criteria. Biotechnol Adv 36(8):2060–2076. https://doi.org/10.1016/j.biotechadv.2018.09.003

    Article  PubMed  Google Scholar 

  67. Hanchi H, Mottawea W, Sebei K, Hammami R (2018) The genus Enterococcus: between probiotic potential and safety concerns-an update. Front Microbiol 9:1791. https://doi.org/10.3389/fmicb.2018.01791

    Article  PubMed  PubMed Central  Google Scholar 

  68. Piccinini D, Bernasconi E, Di Benedetto C, Martinetti Lucchini G, Bongiovanni M (2023) Enterococcus hirae infections in the clinical practice. Infect Dis 55(1):71–73. https://doi.org/10.1080/23744235.2022.2125066

    Article  Google Scholar 

  69. Pinkes ME, White C, Wong CS (2019) Native-valve Enterococcus hirae endocarditis: a case report and review of the literature. BMC Infect Dis 19(1):891. https://doi.org/10.1186/s12879-019-4532-z

    Article  PubMed  PubMed Central  Google Scholar 

  70. Montealegre MC, Singh KV, Murray BE (2015) Gastrointestinal tract colonization dynamics by different Enterococcus faecium clades. J Infect Dis 213(12):1914–1922. https://doi.org/10.1093/infdis/jiv597

    Article  PubMed  PubMed Central  Google Scholar 

  71. Beukers AG et al (2017) Comparative genomics of Enterococcus spp. isolated from bovine feces. BMC Microbiol 17(1):52. https://doi.org/10.1186/s12866-017-0962-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jung A, Metzner M, Ryll M (2017) Comparison of pathogenic and non-pathogenic Enterococcus cecorum strains from different animal species. BMC Microbiol 17(1):1–13

    Article  Google Scholar 

  73. Bonacina J, Suárez N, Hormigo R, Fadda S, Lechner M, Saavedra L (2017) A genomic view of food-related and probiotic Enterococcus strains. DNA Res 24(1):11–24

    CAS  PubMed  Google Scholar 

  74. EFSA BIOHAZ Panel, Koutsoumanis K, Allende A, Alvarez-Ordonez A, Bolton D, Bover-Cid S, Chemaly M, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, Fernández Escámez PS, Maradona MP, Herman L (2024) Updated list of QPS-recommended microorganisms for safety risk assessments carried out by EFSA [Data set]. Zenodo. https://zenodo.org/records/10534041

  75. Ogier J-C, Serror P (2008) Safety assessment of dairy microorganisms: the Enterococcus genus. Int J Food Microbiol 126(3):291–301. https://doi.org/10.1016/j.ijfoodmicro.2007.08.017

    Article  CAS  PubMed  Google Scholar 

  76. Holzapfel W, Arini A, Aeschbacher M, Coppolecchia R, Pot B (2018) Enterococcus faecium SF68 as a model for efficacy and safety evaluation of pharmaceutical probiotics. Benef Microbes 9(3):375–388. https://doi.org/10.3920/BM2017.0148

    Article  CAS  PubMed  Google Scholar 

  77. Domann E et al (2007) Comparative genomic analysis for the presence of potential enterococcal virulence factors in the probiotic Enterococcus faecalis strain Symbioflor 1. Int J Med Microbiol 297(7–8):533–539. https://doi.org/10.1016/j.ijmm.2007.02.008

    Article  CAS  PubMed  Google Scholar 

  78. Krawczyk B, Wityk P, Gałęcka M, Michalik M (2021) The many faces of Enterococcus spp.-commensal, probiotic and opportunistic pathogen. Microorganisms. https://doi.org/10.3390/microorganisms9091900

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gharsallaoui A, Oulahal N, Joly C, Degraeve P (2016) Nisin as a food preservative: part 1: physicochemical properties, antimicrobial activity, and main uses. Crit Rev Food Sci Nutr 56(8):1262–1274. https://doi.org/10.1080/10408398.2013.763765

    Article  CAS  PubMed  Google Scholar 

  80. Asaduzzaman SM, Sonomoto K (2009) Lantibiotics: diverse activities and unique modes of action. J Biosci Bioeng 107(5):475–487. https://doi.org/10.1016/j.jbiosc.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  81. Sturme MHJ, Kleerebezem M, Nakayama J, Akkermans ADL, Vaughan EE, de Vos WM (2002) Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek 81(1):233–243. https://doi.org/10.1023/A:1020522919555

    Article  CAS  PubMed  Google Scholar 

  82. Zeng J, Decker R, Zhan J (2012) Biochemical characterization of a type III polyketide biosynthetic gene cluster from Streptomyces toxytricini. Appl Biochem Biotechnol 166(4):1020–1033. https://doi.org/10.1007/s12010-011-9490-x

    Article  CAS  PubMed  Google Scholar 

  83. Funa N, Funabashi M, Yoshimura E, Horinouchi S (2005) A novel quinone-forming monooxygenase family involved in modification of aromatic polyketides *. J Biol Chem 280(15):14514–14523. https://doi.org/10.1074/jbc.M500190200

    Article  CAS  PubMed  Google Scholar 

  84. Isogai S, Nishiyama M, Kuzuyama T (2012) Identification of 8-amino-2,5,7-trihydroxynaphthalene-1,4-dione, a novel intermediate in the biosynthesis of Streptomyces meroterpenoids. Bioorg Med Chem Lett 22(18):5823–5826. https://doi.org/10.1016/j.bmcl.2012.07.084

    Article  CAS  PubMed  Google Scholar 

  85. Winter JM, Moffitt MC, Zazopoulos E, McAlpine JB, Dorrestein PC, Moore BS (2007) Molecular basis for chloronium-mediated meroterpene cyclization: cloning, sequencing, and heterologous expression of the napyradiomycin biosynthetic gene cluster. J Biol Chem 282(22):16362–16368. https://doi.org/10.1074/jbc.M611046200

    Article  CAS  PubMed  Google Scholar 

  86. Teufel R et al (2014) One-pot enzymatic synthesis of merochlorin A and B. Angew Chem Int Ed 53(41):11019–11022. https://doi.org/10.1002/anie.201405694

    Article  CAS  Google Scholar 

  87. Yamada Y, Cane DE, Ikeda H (2012) Diversity and analysis of bacterial terpene synthases. Methods Enzymol 515:123–162. https://www.sciencedirect.com/science/article/abs/pii/B9780123942906000070

  88. Tan LL, Mahotra M, Chan SY, Loo SCJ (2022) In situ alginate crosslinking during spray-drying of lactobacilli probiotics promotes gastrointestinal-targeted delivery. Carbohydr Polym 286:119279. https://doi.org/10.1016/j.carbpol.2022.119279

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Alex Siow of Opal Resources Pte Ltd for providing the jade perch and tilapia used in this study.

Funding

This work was supported by the Singapore Food Agency (SFS_RND_SUFP_001_06), the Ministry of Education (RG79/22 and RT03/21), and Singapore National Biofilm Consortium (SNBC/2021/SF2/P04).

Author information

Authors and Affiliations

Authors

Contributions

W.R.L., S.C.J.L., Y.L.W., and P.L.C. conceptualised this work. W.R.L. carried out the experiments and gathered and processed the data with C.H.L. and Z.Z.T. W.R.L. drafted the manuscript. S.C.J.L., Y.L.W., and P.L.C. contributed critical feedback to the research, data analysis, and manuscript development. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Say Chye Joachim Loo.

Ethics declarations

Competing Interests

There are no competing interests to declare.

Declaration of Generative AI and AI-Assisted Technologies in the Writing Process

During the preparation of this work, the authors used ChatGPT 3.5 and Anthropic’s Claude to improve readability and language. After using the tools, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7431 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Lim, C.H., Zhao, Z. et al. In Vitro Profiling of Potential Fish Probiotics, Enterococcus hirae Strains, Isolated from Jade Perch, and Safety Properties Assessed Using Whole Genome Sequencing. Probiotics & Antimicro. Prot. (2024). https://doi.org/10.1007/s12602-024-10244-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-024-10244-0

Keywords

Navigation