Skip to main content

Advertisement

Log in

Strain-Specific Anti-Inflammatory Effects of Faecalibacterium prausnitzii Strain KBL1027 in Koreans

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Faecalibacterium prausnitzii is one of the most dominant commensal bacteria in the human gut, and certain anti-inflammatory functions have been attributed to a single microbial anti-inflammatory molecule (MAM). Simultaneously, substantial diversity among F. prausnitzii strains is acknowledged, emphasizing the need for strain-level functional studies aimed at developing innovative probiotics. Here, two distinct F. prausnitzii strains, KBL1026 and KBL1027, were isolated from Korean donors, exhibiting notable differences in the relative abundance of F. prausnitzii. Both strains were identified as the core Faecalibacterium amplicon sequence variant (ASV) within the healthy Korean cohort, and their MAM sequences showed a high similarity of 98.6%. However, when a single strain was introduced to mice with dextran sulfate sodium (DSS)-induced colitis, KBL1027 showed the most significant ameliorative effects, including alleviation of colonic inflammation and restoration of gut microbial dysbiosis. Moreover, the supernatant from KBL1027 elevated the secretion of IL-10 cytokine more than that of KBL1026 in mouse bone marrow–derived macrophage (BMDM) cells, suggesting that the strain-specific, anti-inflammatory efficacy of KBL1027 might involve effector compounds other than MAM. Through analysis of the Faecalibacterium pan-genome and comparative genomics, strain-specific functions related to extracellular polysaccharide biosynthesis were identified in KBL1027, which could contribute to the observed morphological disparities. Collectively, our findings highlight the strain-specific, anti-inflammatory functions of F. prausnitzii, even within the same core ASV, emphasizing the influence of their human origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated in this study are available in Figshare at https://doi.org/https://doi.org/10.6084/m9.figshare.24105207. All other data that support the findings of this study are available upon reasonable request to the corresponding author.

References

  1. Miquel S, Martin R, Rossi O et al (2013) Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 16:255–261. https://doi.org/10.1016/j.mib.2013.06.003

    Article  PubMed  CAS  Google Scholar 

  2. Leylabadlo HE, Ghotaslou R, Feizabadi MM et al (2020) The critical role of Faecalibacterium prausnitzii in human health: an overview. Microb Pathog 149:104344. https://doi.org/10.1016/j.micpath.2020.104344

    Article  PubMed  CAS  Google Scholar 

  3. Duncan SH, Hold GL, Harmsen HJM et al (2002) Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 52:2141–2146. https://doi.org/10.1099/00207713-52-6-2141

    Article  PubMed  CAS  Google Scholar 

  4. Martín R, Miquel S, Benevides L et al (2017) Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of F. prausnitzii as a next-generation probiotic. Front Microbiol 8:1226. https://doi.org/10.3389/fmicb.2017.01226

  5. Lopez-Siles M, Khan TM, Duncan SH et al (2012) Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol 78:420–428. https://doi.org/10.1128/AEM.06858-11

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  6. De Filippis F, Pasolli E, Ercolini D (2020) Newly explored Faecalibacterium diversity is connected to age, lifestyle, geography, and disease. Curr Biol 30:4932–4943. https://doi.org/10.1016/j.cub.2020.09.063

    Article  PubMed  CAS  Google Scholar 

  7. Cao Y, Shen J, Ran ZH (2014) Association between Faecalibacterium prausnitzii reduction and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Gastroenterol Res Pract 2014:872725. https://doi.org/10.1155/2014/872725

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ferreira-Halder CV, de Sousa Faria AV, Andrade SS (2017) Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract Res Clin Gastroenterol 31:643–648. https://doi.org/10.1016/j.bpg.2017.09.011

    Article  PubMed  CAS  Google Scholar 

  9. Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146:1489–1499. https://doi.org/10.1053/j.gastro.2014.02.009

    Article  PubMed  CAS  Google Scholar 

  10. Lopez-Siles M, Duncan SH, Garcia-Gil LJ et al (2017) Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J 11:841–852. https://doi.org/10.1038/ismej.2016.176

    Article  PubMed  PubMed Central  Google Scholar 

  11. Carlsson AH, Yakymenko O, Olivier I et al (2013) Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis. Scand J Gastroenterol 48:1136–1144. https://doi.org/10.3109/00365521.2013.828773

    Article  PubMed  CAS  Google Scholar 

  12. Martín R, Chain F, Miquel S et al (2014) The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm Bowel Dis 20:417–430. https://doi.org/10.1097/01.MIB.0000440815.76627.64

    Article  PubMed  Google Scholar 

  13. Martín R, Miquel S, Chain F et al (2015) Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol 15:67. https://doi.org/10.1186/s12866-015-0400-1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Miquel S, Leclerc M, Martin R et al (2015) Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. mBio 6 https://doi.org/10.1128/mbio.00300-15

  15. Sakamoto M, Sakurai N, Tanno H et al (2022) Genome-based, phenotypic and chemotaxonomic classification of Faecalibacterium strains: proposal of three novel species Faecalibacterium duncaniae sp. nov., Faecalibacterium hattorii sp. nov. and Faecalibacterium gallinarum sp. nov. Int J Syst Evol Microbiol 72:005379. https://doi.org/10.1099/ijsem.0.005379.

  16. Fitzgerald CB, Shkoporov AN, Sutton TDS et al (2018) Comparative analysis of Faecalibacterium prausnitzii genomes shows a high level of genome plasticity and warrants separation into new species-level taxa. BMC Genomics 19:931. https://doi.org/10.1186/s12864-018-5313-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Yin L, Laevsky G, Giardina C (2001) Butyrate suppression of colonocyte NF-κB activation and cellular proteasome activity. J Biol Chem 276:44641–44646. https://doi.org/10.1074/jbc.M105170200

    Article  PubMed  CAS  Google Scholar 

  18. Rossi O, Van Berkel LA, Chain F et al (2016) Faecalibacterium prausnitzii A2–165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Sci Rep 6:18507. https://doi.org/10.1038/srep18507

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  19. Plöger S, Stumpff F, Penner GB et al (2012) Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann N Y Acad Sci 1258:52–59. https://doi.org/10.1111/j.1749-6632.2012.06553.x

    Article  ADS  PubMed  CAS  Google Scholar 

  20. Song H, Yoo Y, Hwang J et al (2016) Faecalibacterium prausnitzii subspecies–level dysbiosis in the human gut microbiome underlying atopic dermatitis. J Allergy Clin Immunol 137:852–860. https://doi.org/10.1016/j.jaci.2015.08.021

    Article  PubMed  CAS  Google Scholar 

  21. Quévrain E, Maubert M, Michon C et al (2016) Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65:415–425. https://doi.org/10.1136/gutjnl-2014-307649

    Article  PubMed  CAS  Google Scholar 

  22. Breyner NM, Michon C, de Sousa CS et al (2017) Microbial anti-inflammatory molecule (MAM) from Faecalibacterium prausnitzii shows a protective effect on DNBS and DSS-induced colitis model in mice through inhibition of NF-κB pathway. Front Microbiol 8:114. https://doi.org/10.3389/fmicb.2017.00114

    Article  PubMed  PubMed Central  Google Scholar 

  23. Auger S, Kropp C, Borras-Nogues E et al (2022) Intraspecific diversity of microbial anti-inflammatory molecule (MAM) from Faecalibacterium prausnitzii. Int J Mol Sci 23:1705. https://doi.org/10.3390/ijms23031705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rossi O, Khan MT, Schwarzer M et al (2015) Faecalibacterium prausnitzii strain HTF-F and its extracellular polymeric matrix attenuate clinical parameters in DSS-induced colitis. PLoS ONE 10:e0123013. https://doi.org/10.1371/journal.pone.0123013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. You HJ, Si J, Kim J et al (2023) Bacteroides vulgatus SNUG 40005 restores Akkermansia depletion by metabolite modulation. Gastroenterology 164:103–116. https://doi.org/10.1053/j.gastro.2022.09.040

    Article  PubMed  CAS  Google Scholar 

  26. Seo B, Jeon K, Moon S et al (2020) Roseburia spp. abundance associates with alcohol consumption in humans and its administration ameliorates alcoholic fatty liver in mice. Cell Host Microbe 27:25–40. e6. https://doi.org/10.1016/j.chom.2019.11.001.

  27. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lim MY, Hong S, Bang S-J et al (2021) Gut microbiome structure and association with host factors in a Korean population. mSystems 6:e0017921. https://doi.org/10.1128/msystems.00179-21.

  30. Fischer ER, Hansen BT, Nair V et al (2012) Scanning electron microscopy. Curr Protoc Microbiol 25:2B.2.1–2B.2.47. https://doi.org/10.1002/9780471729259.mc02b02s25.

  31. Gonçalves R, Mosser DM (2015) The isolation and characterization of murine macrophages. Curr Protoc Immunol 111:14.1.1-.1.6. https://doi.org/10.1002/0471142735.im1401s111.

  32. Coil D, Jospin G, Darling AE (2014) A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31:587–589. https://doi.org/10.1093/bioinformatics/btu661

    Article  PubMed  CAS  Google Scholar 

  33. Richter M, Rosselló-Móra R, Oliver Glöckner F et al (2015) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931. https://doi.org/10.1093/bioinformatics/btv681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Aziz RK, Bartels D, Best AA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  PubMed  CAS  Google Scholar 

  36. Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182. https://doi.org/10.1038/s41467-019-10210-3

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  37. Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296. https://doi.org/10.1093/nar/gkab301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Dereeper A, Summo M, Meyer DF (2022) PanExplorer: a web-based tool for exploratory analysis and visualization of bacterial pan-genomes. Bioinformatics 38:4412–4414. https://doi.org/10.1093/bioinformatics/btac504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60. https://doi.org/10.1038/nmeth.3176

    Article  PubMed  CAS  Google Scholar 

  40. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  41. Foditsch C, Santos TM, Teixeira AG et al (2014) Isolation and characterization of Faecalibacterium prausnitzii from calves and piglets. PLoS ONE 9:e116465. https://doi.org/10.1371/journal.pone.0116465

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tsuneda S, Aikawa H, Hayashi H et al (2003) Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol Lett 223:287–292. https://doi.org/10.1016/S0378-1097(03)00399-9

    Article  PubMed  CAS  Google Scholar 

  43. Angelin J, Kavitha M (2020) Exopolysaccharides from probiotic bacteria and their health potential. Int J Biol Macromol 162:853–865. https://doi.org/10.1016/j.ijbiomac.2020.06.190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chassaing B, Aitken JD, Malleshappa M et al (2014) Dextran sulfate sodium (DSS)‐induced colitis in mice. Curr Protoc Immunol 104:15.25.1–14. https://doi.org/10.1002/0471142735.im1525s104

  45. Chelakkot C, Ghim J, Ryu SH (2018) Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med 50:1–9. https://doi.org/10.1038/s12276-018-0126-x

    Article  PubMed  CAS  Google Scholar 

  46. Lagkouvardos I, Pukall R, Abt B et al (2016) The mouse intestinal bacterial collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 1:16131. https://doi.org/10.1038/nmicrobiol.2016.131

    Article  PubMed  CAS  Google Scholar 

  47. Mukhopadhya I, Hansen R, El-Omar EM et al (2012) IBD—what role do proteobacteria play? Nat Rev Gastroenterol Hepatol 9:219–230. https://doi.org/10.1038/nrgastro.2012.14

    Article  PubMed  CAS  Google Scholar 

  48. Iljazovic A, Roy U, Gálvez EJ et al (2021) Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol 14:113–124. https://doi.org/10.1038/s41385-020-0296-4

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) (NRF-2022M3A9F3017371, RS-2023-00223831) and the Main Research Program (E0170600-07) of the Korea Food Research Institute (KFRI), funded by the Korean Ministry of Science and Information & Communication Technology (ICT).

Author information

Authors and Affiliations

Authors

Contributions

B.S. designed the study, performed the experiments, and analyzed the data. K.J., W.K., and Y.J.J. assisted in the in vivo mouse experiments. K.H.C. generated the microbiome data from human donor feces for bacterial isolation. B.S. wrote the initial draft of the manuscript. G.K. supervised the study and revised the manuscript accordingly.

Corresponding author

Correspondence to GwangPyo Ko.

Ethics declarations

Competing Interests

G.K. is the founder of KoBioLabs, Inc. The remaining authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7,252 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, B., Jeon, K., Kim, WK. et al. Strain-Specific Anti-Inflammatory Effects of Faecalibacterium prausnitzii Strain KBL1027 in Koreans. Probiotics & Antimicro. Prot. (2024). https://doi.org/10.1007/s12602-024-10213-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-024-10213-7

Keywords

Navigation