Skip to main content

Advertisement

Log in

Understanding Osteoporosis: Human Bone Density, Genetic Mechanisms, Gut Microbiota, and Future Prospects

  • Review
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Osteoporosis is a systemic condition of the skeleton that leads to diminished bone mass, a breakdown in the bone tissue’s microscopic architecture, and an elevated risk of breaking a bone. The elderly and women particularly after menopause are disproportionately affected, and the condition generally stays undiagnosed until a broken bone causes severe pain and immobility. Causes of osteoporosis include low bone mass, more than normal bone loss, changes in hormone levels (decreased estrogen or testosterone), certain diseases and therapies, and lifestyle factors like smoking and inactivity. The spine, hip, and forearm are particularly vulnerable to osteoporosis-related fractures. The purpose of this article is to present a thorough understanding of osteoporosis, including the disease’s connection to bone density in humans, and the major part played by genetic pathways and gut flora. The causes of osteoporosis, the effects of aging on bone density, and why some groups experience a higher incidence of the disease than others are investigated. The paper also includes animal and human experiments investigating the link between gut flora and osteoporosis. Finally, it looks to the future and speculates on possible developments in osteoporosis prevention and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Demontiero O, Vidal C, Duque G (2012) Aging and bone loss: new insights for the clinician. Ther Adv Musculoskelet Dis 4:61–76. https://doi.org/10.1177/1759720X11430858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Office of the Surgeon General (US) (2004) Bone health and osteoporosis: a report of the surgeon general. Rockville (MD): Office of the Surgeon General (US) 2004

  3. Sozen T, Ozisik L, Calik Basaran N (2017) An overview and management of osteoporosis. Eur J Rheumatol 4:46–56. https://doi.org/10.5152/eurjrheum.2016.048

    Article  PubMed  Google Scholar 

  4. Pouresmaeili F, Kamalidehghan B, Kamarehei M, Goh YM (2018) A comprehensive overview on osteoporosis and its risk factors. Ther Clin Risk Manag 14:2029–2049. https://doi.org/10.2147/TCRM.S138000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Siddiqui JA, Partridge NC (2016) Physiological bone remodeling: systemic regulation and growth factor involvement. Physiology 31:233–245. https://doi.org/10.1152/physiol.00061.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tu KN, Lie JD, Wan CKV et al (2018) Osteoporosis: a review of treatment options. Pharm Ther 43:92–104

    Google Scholar 

  7. Salari N, Darvishi N, Bartina Y et al (2021) Global prevalence of osteoporosis among the world older adults: a comprehensive systematic review and meta-analysis. J Orthop Surg Res 16:1–13. https://doi.org/10.1186/s13018-021-02821-8

    Article  Google Scholar 

  8. Rozenberg S, Bruyère O, Bergmann P et al (2020) How to manage osteoporosis before the age of 50. Maturitas 138:14–25. https://doi.org/10.1016/j.maturitas.2020.05.004

    Article  CAS  PubMed  Google Scholar 

  9. De Martinis M, Sirufo MM, Polsinelli M et al (2020) Gender differences in osteoporosis: a single-center observational study. World J Mens Health 38:2287–4690. https://doi.org/10.5534/WJMH.200099

    Article  Google Scholar 

  10. Alswat KA (2017) Gender disparities in osteoporosis. J Clin Med Res 9:382–387. https://doi.org/10.14740/jocmr2970w

  11. Björnsdottir S, Clarke BL, Mannstadt M, Langdahl BL (2022) Male osteoporosis-what are the causes, diagnostic challenges, and management. Best Pract Res Clin Rheumatol 36. https://doi.org/10.1016/j.berh.2022.101766

  12. LeBoff MS, Greenspan SL, Insogna KL et al (2022) The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 33:2049–2102. https://doi.org/10.1007/s00198-021-05900-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Release notice (2021) Osteoporosis and related fractures in Canada: report from the Canadian Chronic Disease Surveillance System 2020

  14. Hou J, He C, He W et al (2020) Obesity and bone health: a complex link. Front Cell Dev Biol 8:1–16. https://doi.org/10.3389/fcell.2020.600181

    Article  Google Scholar 

  15. Noel SE, Santos MP, Wright NC (2021) Racial and ethnic disparities in bone health and outcomes in the United States. J Bone Miner Res 36:1881–1905. https://doi.org/10.1002/jbmr.4417

    Article  PubMed  Google Scholar 

  16. Cauley JA (2011) Defining ethnic and racial differences in osteoporosis and fragility fractures. Clin Orthop Relat Res 469:1891–1899. https://doi.org/10.1007/s11999-011-1863-5

    Article  PubMed  PubMed Central  Google Scholar 

  17. Prada D, Zhong J, Colicino E et al (2017) Association of air particulate pollution with bone loss over time and bone fracture risk: analysis of data from two independent studies. Lancet Planet Heal 1:e337–e347. https://doi.org/10.1016/S2542-5196(17)30136-5

    Article  Google Scholar 

  18. Wright NC, Melton ME, Sohail M et al (2019) Race plays a role in the knowledge, attitudes, and beliefs of women with osteoporosis. J Racial Ethn Heal Disparities 6:707–718. https://doi.org/10.1007/s40615-019-00569-w

    Article  Google Scholar 

  19. Föger-Samwald U, Dovjak P, Azizi-Semrad U et al (2020) Osteoporosis: pathophysiology and therapeutic options. Excli J 19:1017–1037. https://doi.org/10.17179/excli2020-2591

  20. Marini F, Brandi ML (2010) Genetic determinants of osteoporosis: common bases to cardiovascular diseases? Int J Hypertens 2010. https://doi.org/10.4061/2010/394579

  21. Mäkitie RE, Costantini A, Kämpe A et al (2019) New insights into monogenic causes of osteoporosis. Front Endocrinol 10:1–15. https://doi.org/10.3389/fendo.2019.00070

    Article  Google Scholar 

  22. Trajanoska K, Rivadeneira F (2019) The genetic architecture of osteoporosis and fracture risk. Bone 126:2–10. https://doi.org/10.1016/j.bone.2019.04.005

    Article  PubMed  Google Scholar 

  23. Zhu X, Bai W, Zheng H (2021) Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res 9(1):23. https://doi.org/10.1038/s41413-021-00143-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hou-Feng Z, Vincenzo F, Yi-Hsiang H et al (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526:112–117. https://doi.org/10.1038/nature14878

    Article  CAS  Google Scholar 

  25. Alonso N, Albagha OME, Azfer A et al (2023) Genome-wide association study identifies genetic variants which predict the response of bone mineral density to teriparatide therapy. Ann Rheum Dis 985–991. https://doi.org/10.1136/ard-2022-223618

  26. Seely KD, Kotelko CA, Douglas H et al (2021) The human gut microbiota: a key mediator of osteoporosis and osteogenesis. Int J Mol Sci 22. https://doi.org/10.3390/ijms22179452

  27. Chen Y, Wang X, Zhang C et al (2022) Gut microbiota and bone diseases: a growing partnership. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.877776

  28. Ke K, Arra M, Abu-Amer Y (2019) Mechanisms underlying bone loss associated with gut inflammation. Int J Mol Sci 20. https://doi.org/10.3390/ijms20246323

  29. Yan Q, Cai L, Guo W (2022) New advances in improving bone health based on specific gut microbiota. Front Cell Infect Microbiol 12:1–11. https://doi.org/10.3389/fcimb.2022.821429

    Article  CAS  Google Scholar 

  30. Behera J, Ison J, Tyagi SC, Tyagi N (2020) The role of gut microbiota in bone homeostasis. Bone 135:115317. https://doi.org/10.1016/j.bone.2020.115317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li S, Mao Y, Zhou F et al (2020) Gut microbiome and osteoporosis. Bone Jt Res 9:524–530. https://doi.org/10.1302/2046-3758.98.BJR-2020-0089.R1

    Article  Google Scholar 

  32. Cooney OD, Nagareddy PR, Murphy AJ, Lee MKS (2021) Healthy gut, healthy bones: targeting the gut microbiome to promote bone health. Front Endocrinol (Lausanne) 11:1–7. https://doi.org/10.3389/fendo.2020.620466

    Article  Google Scholar 

  33. Wu HJ, Wu E (2012) The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3:4–14. https://doi.org/10.4161/gmic.19320

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zheng D, Liwinski T, Elinav E (2020) Interaction between microbiota and immunity in health and disease. Cell Res 30:492–506. https://doi.org/10.1038/s41422-020-0332-7

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen Y, Xu J, Chen Y (2021) Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients 13:1–21. https://doi.org/10.3390/nu13062099

    Article  CAS  Google Scholar 

  36. Li J, Ho WTP, Liu C et al (2021) The role of gut microbiota in bone homeostasis. Bone Jt Res 10:51–59. https://doi.org/10.1302/2046-3758.101.BJR-2020-0273.R1

    Article  Google Scholar 

  37. Okoro PC, Orwoll ES, Huttenhower C et al (2023) A two-cohort study on the association between the gut microbiota and bone density, microarchitecture, and strength. Front Endocrinol 14:1237727. https://doi.org/10.3389/fendo.2023.1237727

    Article  Google Scholar 

  38. Cronin O, Lanham-New SA, Corfe BM et al (2022) Role of the microbiome in regulating bone metabolism and susceptibility to osteoporosis. Calcif Tissue Int 110:273–284. https://doi.org/10.1007/s00223-021-00924-2

    Article  CAS  PubMed  Google Scholar 

  39. Lorenzo J (2021) From the gut to bone: connecting the gut microbiota with Th17 T lymphocytes and postmenopausal osteoporosis. J Clin Invest 131:1–3. https://doi.org/10.1172/JCI146619

    Article  Google Scholar 

  40. Chevalier C, Kieser S, Çolakoğlu M et al (2020) Warmth prevents bone loss through the gut microbiota. Cell Metab 32:575-590.e7. https://doi.org/10.1016/j.cmet.2020.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wei H, Xu Y, Wang Y et al (2020) Identification of fibroblast activation protein as an osteogenic suppressor and anti-osteoporosis drug target. Cell Rep 33:108252. https://doi.org/10.1016/j.celrep.2020.108252

    Article  CAS  PubMed  Google Scholar 

  42. Zhang J, Lu Y, Wang Y et al (2018) The impact of the intestinal microbiome on bone health. Intractable Rare Dis Res 7:148–155. https://doi.org/10.5582/irdr.2018.01055

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zemanova N, Omelka R, Mondockova V et al (2022) Roles of gut microbiome in bone homeostasis and its relationship with bone-related diseases. Biology (Basel) 11:1–24. https://doi.org/10.3390/biology11101402

    Article  CAS  Google Scholar 

  44. Li C, Pi G, Li F (2021) The role of intestinal flora in the regulation of bone homeostasis. Front Cell Infect Microbiol 11:1–16. https://doi.org/10.3389/fcimb.2021.579323

    Article  CAS  Google Scholar 

  45. Jansson PA, Curiac D, Lazou Ahrén I et al (2019) Probiotic treatment using a mix of three Lactobacillus strains for lumbar spine bone loss in postmenopausal women: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet Rheumatol 1:e154–e162. https://doi.org/10.1016/S2665-9913(19)30068-2

    Article  PubMed  Google Scholar 

  46. Jones RM, Mulle JG, Pacifici R (2018) Osteomicrobiology: the influence of gut microbiota on bone in health and disease. Bone 115:59–67. https://doi.org/10.1016/j.bone.2017.04.009

    Article  PubMed  Google Scholar 

  47. Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7:292–304. https://doi.org/10.1038/nri2062

    Article  CAS  PubMed  Google Scholar 

  48. Yan J, Herzog JW, Tsang K et al (2016) Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci U S A 113:E7554–E7563. https://doi.org/10.1073/pnas.1607235113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen Z, Cai Z, Zhuang P et al (2023) Living probiotic biomaterials for osteoporosis therapy. Biomed Technol 1:52–64. https://doi.org/10.1016/j.bmt.2022.11.007

    Article  CAS  Google Scholar 

  50. Mutuş R, Kocabaǧli N, Alp M et al (2006) The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poult Sci 85:1621–1625. https://doi.org/10.1093/ps/85.9.1621

    Article  PubMed  Google Scholar 

  51. Rodrigues FC, Castro ASB, Rodrigues VC et al (2012) Yacon flour and bifidobacterium longum modulate bone health in rats. J Med Food 15:664–670. https://doi.org/10.1089/jmf.2011.0296

    Article  CAS  PubMed  Google Scholar 

  52. Tomofuji T, Ekuni D, Azuma T et al (2012) Supplementation of broccoli or Bifidobacterium longum-fermented broccoli suppresses serum lipid peroxidation and osteoclast differentiation on alveolar bone surface in rats fed a high-cholesterol diet. Nutr Res 32:301–307. https://doi.org/10.1016/j.nutres.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  53. Mccabe LR, Irwin R, Schaefer L, Britton RA (2013) Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol 228:1793–1798. https://doi.org/10.1002/jcp.24340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kruger MC, Fear A, Chua WH et al (2009) The effect of Lactobacillus rhamnosus HN001 on mineral absorption and bone health in growing male and ovariectomised female rats. Dairy Sci Technol 89:219–231. https://doi.org/10.1051/dst/2009012

    Article  CAS  Google Scholar 

  55. Favazzo LJ, Hendesi H, Villani DA et al (2020) The gut microbiome-joint connection: Implications in osteoarthritis. Curr Opin Rheumatol 32:92–101. https://doi.org/10.1097/BOR.0000000000000681

    Article  PubMed  Google Scholar 

  56. Wei J, Zhang C, Zhang Y et al (2021) Association between gut microbiota and symptomatic hand osteoarthritis: data from the Xiangya Osteoarthritis Study. Arthritis Rheumatol 73:1656–1662. https://doi.org/10.1002/art.41729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chiang SS, Pan TM (2011) Antiosteoporotic effects of lactobacillus-fermented soy skim milk on bone mineral density and the microstructure of femoral bone in ovariectomized mice. J Agric Food Chem 59:7734–7742. https://doi.org/10.1021/jf2013716

    Article  CAS  PubMed  Google Scholar 

  58. Kim JG, Lee E, Kim SH et al (2009) Effects of a Lactobacillus casei 393 fermented milk product on bone metabolism in ovariectomised rats. Int Dairy J 19:690–695. https://doi.org/10.1016/j.idairyj.2009.06.009

    Article  CAS  Google Scholar 

  59. Liu H, Gu R, Li W et al (2019) Lactobacillus rhamnosus GG attenuates tenofovir disoproxil fumarate-induced bone loss in male mice via gut-microbiota-dependent anti-inflammation. Ther Adv Chronic Dis 10:1–23. https://doi.org/10.1177/2040622319860653

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J. J. A.: conceptualization, writing original draft, review and editing. V. K. and A. R.: writing original draft, review and editing. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Jayesh J. Ahire.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Competing Interests

J. J. A. was employed by Dr. Reddy’s Laboratories Limited. Dr. Reddy’s Laboratories had no direct and indirect role in the design/analysis/writing/publication of this review article. Other authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahire, J.J., Kumar, V. & Rohilla, A. Understanding Osteoporosis: Human Bone Density, Genetic Mechanisms, Gut Microbiota, and Future Prospects. Probiotics & Antimicro. Prot. 16, 875–883 (2024). https://doi.org/10.1007/s12602-023-10185-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-023-10185-0

Keywords

Navigation