Skip to main content

Advertisement

Log in

Plasmid-Associated Bacteriocin Produced by Pediococcus pentosaceus Isolated from Smoked Salmon: Partial Characterization and Some Aspects of his Mode of Action

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Strain ST3Ha, isolated from commercially available smoked salmon, was identified as Pediococcus pentosaceus based on biochemical and physiological tests and 16S rRNA sequencing. Strain ST3Ha produces a class IIa bacteriocin active against lactic acid bacteria, Listeria monocytogenes and Enterococcus faecalis. The antimicrobial peptide was inactivated by proteolytic enzymes, confirming his proteinaceous nature, but was not affected when treated with α-amylase, SDS, Tween 20, Tween 80, urea, and EDTA. No change in activity was recorded after 2 h at pH values between 2.0 and 9.0 and after treatment at 100 °C for 120 min or 121 °C for 15 min. The mode of action against Listeria ivanovii subsp. ivanovii ATCC 19119 and E. faecalis ATCC 19443 was bactericidal, resulting in cell lyses and enzyme leakage. The highest level of activity (1.6 × 106 AU/mL) was recorded when cells were grown at 37 °C or 30 °C in MRS broth (pH 6.5). Antimicrobial peptide ST3Ha adsorbs at high levels to the sensitive test organisms on strain-specific manner and depending on incubation temperature, environmental pH, and presence of supplemented chemicals. Based on PCR analysis, P. pentosaceus ST3Ha harbor a 1044-bp plasmid-associated fragment corresponding in size to that recorded for pediocin PA-1. Sequencing of the fragment revealed a gene identical to pedB, reported for pediocin PA-1. The combined application of the low levels (below MIC) of ciprofloxacin and bacteriocin ST3Ha results in the synergetic effect in the inhibition of L. ivanovii subsp. ivanovii ATCC 19119. Expressed by P. pentosaceus ST3Ha, bacteriocin was characterized as low cytotoxic, a characteristic relevant for its application in food industry and/or in human and veterinary medical practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and comply with research standards.

References

  1. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM (2018) Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 49:23–28. https://doi.org/10.1016/j.copbio.2017.07.011

    Article  CAS  PubMed  Google Scholar 

  2. Todorov SD, Popov I, Weeks R, Chikindas ML (2022) Use of bacteriocins and bacteriocinogenic beneficial organisms in food products: benefits, challenges, concerns. Foods 11:3145. https://doi.org/10.3390/foods11193145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Choi G-H, Holzapfel WH, Todorov SD (2022) Diversity of the bacteriocins, their classification and potential applications in combat of antibiotic resistant and clinically relevant pathogens. Crit Rev Microbiol https://doi.org/10.1080/1040841X.2022.2090227. Ahead of print

  4. Pérez-Ramos A, Madi-Moussa D, Coucheney F, Drider D (2021) Current knowledge of the mode of action and immunity mechanisms of LAB-bacteriocins. Microorganisms 9(10):2107. https://doi.org/10.3390/microorganisms9102107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang F, Teng K, Liu Y, Cao Y, Wang T, Ma C, Zhang J, Zhong J (2021) Bacteriocins: potential for human health. Oxid Med Cell Longev 2021:5518825. https://doi.org/10.1155/2021/5518825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Soltani S, Hammami R, Cotter PD, Rebuffat S, Ben Said L, Gaudreau H, Bédard F, Biron E, Drider D, Fliss I (2021) Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev 45(1):fuaa039. https://doi.org/10.1093/femsre/fuaa039

  7. Gautam N, Sharma N (2009) Bacteriocin: safest approach to preserve food products. Indian J Microbiol 49(3):204–211. https://doi.org/10.1007/s12088-009-0048-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113(1):1–15. https://doi.org/10.1016/j.ijfoodmicro.2006.07.008

    Article  PubMed  Google Scholar 

  9. Camargo AC, McFarland AP, Woodward JJ, Nero LA (2022) The magnitude of cell invasion and cell-to-cell spread of Listeria monocytogenes is correlated with serotype-specific traits. Int J Food Microbiol 382:109906. https://doi.org/10.1016/j.ijfoodmicro.2022.109906

  10. Heng NCK, Wescombe PA, Burton JP, Jack RW, Tagg JR (2007) The diversity of bacteriocins in Gram-positive bacteria. In: Riley MA, Chavan MA (Eds) Bacteriocins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36604-1_4

  11. Ennahar S, Sashihara T, Sonomoto K, Ishizaki A (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24(1):85–106. https://doi.org/10.1111/j.1574-6976.2000.tb00534.x

    Article  CAS  PubMed  Google Scholar 

  12. dos Santos KMO, de Matos CR, Salles HO, Franco BDGM, Arellano K, Holzapfel WH, Todorov SD (2020) Exploring beneficial/virulence properties of two dairy related strains of Streptococcus infantarius subsp. infantarius. Prob Antimicr Prot 12(4):1524–1541. https://doi.org/10.1007/s12602-020-09637-8

  13. de Vos P, Garrity GM, Jones D, Kreig NR, Ludwig W, Rainey FA, Schleifel K-H, Whitman WB (2009) Bergey’s manual of systematic bacteriology, vol 3. Wiley Publishing Group, Hoboken, NJ, USA, The Firmicutes. https://doi.org/10.1002/9781118960608

    Book  Google Scholar 

  14. Felske A, Rheims H, Wolternink A, Stackebrandt E, Akkermans ADL (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiol 143(9):2983–2989. https://doi.org/10.1099/00221287-143-9-2983

    Article  CAS  Google Scholar 

  15. Barbosa J, Gibbs PA, Teixeira P (2010) Virulence factors among enterococci isolated from traditional fermented meat products produced in the North of Portugal. Food Control 21(5):651–656. https://doi.org/10.1016/j.foodcont.2009.10.002

    Article  CAS  Google Scholar 

  16. Bover-Cid S, Holzapfel WH (1999) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 53(1):33–41. https://doi.org/10.1016/s0168-1605(99)00152-x

    Article  CAS  PubMed  Google Scholar 

  17. Charteris WP, Kelly PM, Morelli L, Collins JK (2001) Gradient diffusion antibiotic susceptibility testing of potentially probiotic lactobacilli. J Food Prot 64(12):2007–2014. https://doi.org/10.4315/0362-028x-64.12.2007

    Article  CAS  PubMed  Google Scholar 

  18. Favaro L, Basaglia M, Casella S, Hue I, Dousset X, Franco BDGM, Todorov SD (2014) Bacteriocinogenic potential and safety evaluation of non-starter Enterococcus faecium strains isolated from homemade white brine cheese. Food Microbiol 38:228–239. https://doi.org/10.1016/j.fm.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  19. Todorov SD, Rachman C, Fourrier A, Dicks LMT, van Reenen CA, Prevost H, Dousset X (2011) Characterization of a bacteriocin produced by Lactobacillus sakei R1333 isolated from smoked salmon. Anaerobe 17(1):23–31. https://doi.org/10.1016/j.anaerobe.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  20. Todorov SD, Furtado DN, Saad SMI, Tome E, Franco BDGM (2011) Potential beneficial properties of bacteriocin-producing lactic acid bacteria isolated from smoked salmon. J Appl Microbiol 110(4):971–986. https://doi.org/10.1111/j.1365-2672.2011.04950.x

    Article  CAS  PubMed  Google Scholar 

  21. Yildirim Z, Avşar YK, Yildirim M (2002) Factors affecting the adsorption of buchnericin LB, a bacteriocin produced by Lactobacillus [correction of Lactocobacillus] buchneri. Microbiol Res 157(2):103–107. https://doi.org/10.1078/0944-5013-00134

    Article  CAS  PubMed  Google Scholar 

  22. Todorov SD, Danova ST, Van Reenen CA, Meincken M, Dinkova G, Ivanova IV, Dicks LMT (2006) Characterization of bacteriocin HV219, produced by Lactococcus lactis subsp. lactis HV219 isolated from human vaginal secretions. J Basic Microbiol 46(3):226–238. https://doi.org/10.1002/jobm.200510037

  23. Todorov SD, Holzapfel WH, Nero LA (2016) Characterization of a novel bacteriocin produced by Lactobacillus plantarum ST8SH and some aspects of its mode of action. Ann Microbiol 66(3):949–962. https://doi.org/10.1007/s13213-015-1180-4

    Article  CAS  Google Scholar 

  24. Favaro L, Campanaro S, Fugaban JII, Treu L, Jung ES, d’Ovidio L, de Oliveira DP, Liong M-T, Ivanova IV, Todorov SD (2022) Genomic, metabolomic and functional characterization of beneficial properties of Pediococcus pentosaceus ST58, isolated from human oral cavity. Benef Microb. Ahead of print.

  25. Wachsman MB, Farias ME, Takeda E, Sesma F, de Ruiz Holgado AP, de Torres RA, Coto CE (1999) Antiviral activity of enterocin CRL35 against herpesviruses. Int J Antimicrob Agents 12(4):293–299. https://doi.org/10.1016/S0924-8579(99)00078-3

    Article  CAS  PubMed  Google Scholar 

  26. Laranjo M, Potes ME, Elias M (2019) Role of starter cultures on the safety of fermented meat products. Front Microbiol 10:853. https://doi.org/10.3389/fmicb.2019.00853

    Article  PubMed  PubMed Central  Google Scholar 

  27. De Vuyst L, Schrijvers V, Paramithiotis S, Hoste B, Vancanneyt M, Swings J, Kalantzopoulos G, Tsakalidou E, Messens W (2002) The biodiversity of lactic acid bacteria in Greek traditional wheat sourdoughs is reflected in both composition and metabolite formation. Appl Environ Microbiol 68(12):6059–6069. https://doi.org/10.1128/AEM.68.12.6059-6069.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zarzecka U, Zadernowska A, Chajecka-Wierzchowska W (2020) Starter cultures as a reservoir of antibiotic resistant microorganisms. LWT Food Sci Technol 127:109424. https://doi.org/10.1016/j.lwt.2020.109424

  29. Kayaoglu G, Ørstavik D (2004) Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Crit Rev Oral Biol Med 15(5):308–320. https://doi.org/10.1177/154411130401500506

    Article  PubMed  Google Scholar 

  30. Maes S, Heyndrickx M, Vackier T, Steenackers H, Verplaetse A, Reu K (2019) Identification and spoilage potential of the remaining dominant microbiota on food contact surfaces after cleaning and disinfection in different food industries. J Food Prot 82(2):262–275. https://doi.org/10.4315/0362-028X.JFP-18-226

    Article  CAS  PubMed  Google Scholar 

  31. Todorov SD (2010) Diversity of bacteriocinogenic lactic acid bacteria isolated from boza, a cereal-based fermented beverage from Bulgaria. Food Control 21(7):1011–1021. https://doi.org/10.1016/j.foodcont.2009.12.020

    Article  CAS  Google Scholar 

  32. Tomé E, Todorov SD, Gibbs PA, Teixeira PC (2009) Partial characterization of nine bacteriocins produced by lactic acid bacteria isolated from cold-smoked salmon with activity against Listeria monocytogenes. Food Biotechnol 23(1):50–73. https://doi.org/10.1080/08905430802671956

    Article  CAS  Google Scholar 

  33. Jang S, Lee D, Jang IS, Choi HS, Suh HJ (2015) The culture of Pediococcus pentosaceus T1 inhibits Listeria proliferation in salmon fillets and controls maturation of kimchi. Food Technol Biotechnol 53(1):29–37. https://doi.org/10.17113/ftb.53.01.15.3754

  34. Todorov SD, Dioso CM, Liong M-T, Nero LA, Khosravi-Darani K, Ivanova IV (2023) Beneficial features of Pediococcus: from starter cultures and inhibitory activities to probiotic benefits. World J Microbiol Biotechnol 39(1):Article 4. https://doi.org/10.1007/s11274-022-03419-w

  35. Tome E, Pereira VL, Lopes CI, Gibbs PA, Teixeira PC (2008) In vitro tests of suitability of bacteriocin-producing lactic acid bacteria, as potential biopreservation cultures in vacuum-packaged cold-smoked salmon. Food Control 19(5):535–543. https://doi.org/10.1016/j.foodcont.2007.06.004

    Article  CAS  Google Scholar 

  36. Kuniyoshi TM, Mendonça CMN, Vieira VB, Robl D, Franco BDGM, Todorov SD, Tomé E, O’Connor PM, Converti A, Araujo WL, Vasconcellos LPSP, Varani AM, Cotter PD, Rabelo SC, Oliveira RPS (2021) Pediocin PA-1 production by Pediococcus pentosaceus ET34 using non-detoxified hemicellulose hydrolysate obtained from hydrothermal pretreatment of sugarcane bagasse. Biores Technol 338(2021):125565. https://doi.org/10.1016/j.biortech.2021.125565

  37. Todorov SD, Cavicchioli VQ, Ananieva M, Bivolarski VP, Vasileva TA, Hinkov AV, Todorov DG, Shishkov S, Haertlé T, Iliev IN, Nero LA, Ivanova IV (2019) Expression of coagulin A with low cytotoxic activity by Pediococcus pentosaceus ST65ACC isolated from raw milk cheese. J Appl Microbiol 128(2):458–472. https://doi.org/10.1111/jam.14492

    Article  CAS  PubMed  Google Scholar 

  38. Wiernasz N, Leroi F, Chevalier F, Cornet J, Cardinal M, Rohloff J, Passerini D, Skırnisdóttir S, Pilet MF (2020) Salmon gravlax biopreservation with lactic acid bacteria: a polyphasic approach to assessing the impact on organoleptic properties, microbial ecosystem and volatilome composition. Front Microbiol 10:3103. https://doi.org/10.3389/fmicb.2019.03103

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dalmış Ü, Soyer A (2008) Effect of processing methods and starter culture (Staphylococcus xylosus and Pediococcus pentosaceus) on proteolytic changes in Turkish sausages (sucuk) during ripening and storage. Meat Sci 80(2):345–354. https://doi.org/10.1016/j.meatsci.2007.12.022

    Article  CAS  PubMed  Google Scholar 

  40. Todorov SD, Dicks LMT (2009) Bacteriocin production by Pediococcus pentosaceus isolated from marula (Scerocarya birrea). Int J Food Microbiol 132(2–3):117–126. https://doi.org/10.1016/j.ijfoodmicro.2009.04.010

    Article  CAS  PubMed  Google Scholar 

  41. Jiang S, Cai L, Lv L, Li L (2021) Pediococcus pentosaceus, a future additive or probiotic candidate. Microb Cell Fact 20(1):45. https://doi.org/10.1186/s12934-021-01537-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barton LL, Rider ED, Coen RW (2001) Bacteremic infection with Pediococcus: vancomycin-resistant opportunist. Pediatr 107(4):775–776. https://doi.org/10.1542/peds.107.4.775

  43. Sarma PS, Mohanty S (1998) Pediococcus acidilactici pneumonitis and bacteremia in a pregnant woman. J Clin Microbiol 36(8):2392–2393. https://doi.org/10.1128/JCM.36.8.2392-2393.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lewus CB, Montville TJ (1991) Detection of bacteriocins produced by lactic acid bacteria. J Microbiol Methods 13(2):145–150. https://doi.org/10.1016/0167-7012(91)90014-H

    Article  CAS  Google Scholar 

  45. Gutierrez-Cortes C, Suarez H, Butirago G, Nero LA, Todorov SD (2018) Characterization of bacteriocins produced by strains of Pediococcus pentosaceus isolated from Minas cheese. Ann Microbiol 68(6):383–398. https://doi.org/10.1007/s13213-018-1345-z

    Article  CAS  Google Scholar 

  46. Albano H, Todorov SD, van Reenen CA, Hogg T, Dicks LMT, Teixeira P (2007) Characterization of a bacteriocin produced by Pediococcus acidilactici isolated from “Alheira”, a fermented sausage traditionally produced in Portugal. Int J Food Microbiol 116(2):239–247. https://doi.org/10.1016/j.ijfoodmicro.2007.01.011

    Article  CAS  PubMed  Google Scholar 

  47. Fugaban JII, Bucheli JEV, Park YJ, Suh DH, Jung ES, Franco BDGM, Ivanova IV, Holzapfel WH, Todorov SD (2022) Antimicrobial properties of Pediococcus acidilactici and Pediococcus pentosaceus isolated from silage. J Appl Microbiol 132(1):311–330. https://doi.org/10.1111/jam.15205

    Article  CAS  PubMed  Google Scholar 

  48. Todorov SD, Dicks LMT (2006) Screening for bacteriocin producer lactic acid bacteria from boza, a traditional cereal beverage from Bulgaria. Characterization of produced bacteriocins Process Biochem 41(1):11–19. https://doi.org/10.1016/J.PROCBIO.2005.01.026

    Article  CAS  Google Scholar 

  49. Green G, Dicks LM, Bruggeman G, Vandamme EJ, Chikindas ML (1997) Pediocin PD-1, a bactericidal antimicrobial peptide from Pediococcus damnosus NCFB 1832. J Appl Microbiol 83(1):127–132. https://doi.org/10.1046/j.1365-2672.1997.00241.x

    Article  CAS  PubMed  Google Scholar 

  50. Ben Belgacem Z, Rehaiem A, Fajardo Bernárdez P, Manai M, Pastrana Castro L (2012) Interactive effects of pH and temperature on the bacteriocin stability by response surface analysis. Mikrobiologiia 81(2):214–219

    CAS  PubMed  Google Scholar 

  51. Matsumoto-Nakano M, Kuramitsu HK (2006) Role of bacteriocin immunity proteins in the antimicrobial sensitivity of Streptococcus mutans. J Bacteriol 188(23):8095–8102. https://doi.org/10.1128/JB.00908-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Todorov S, Onno B, Sorokine O, Chobert J, Ivanova I, Dousset X (1999) Detection and characterization of a novel antibacterial substance produced by Lactobacillus plantarum ST31 isolated from sourdough. Int J Food Microbiol 48:167–177. https://doi.org/10.1016/s0168-1605(99)00048-3

    Article  CAS  PubMed  Google Scholar 

  53. Metivier A, Pilet M-F, Dousset X, Sorokine O, Anglade P, Zagorec M, Piard J-C, Marlon D, Cenatiempo Y, Fremaux C (1998) Divercin V41, a new bacteriocin with two disulphide bonds produced by Carnobacterium divergens V41: primary structure and genomic organization. Microbiol 144:2837–2844. https://doi.org/10.1099/00221287-144-10-2837

    Article  CAS  Google Scholar 

  54. Bhugaloo-Vial P, Grajek W, Dousset X, Boyaval P (1997) Continuous bacteriocin production with high cell density bioreactors. Enzym Microb Technol 21:450–457. https://doi.org/10.1016/s0141-0229(97)00026-4

    Article  CAS  Google Scholar 

  55. Song D, Zhu M, Gu Q (2014) Purification and characterization of plantaricin ZJ5, a new bacteriocin produced by Lactobacillus plantarum ZJ5. PLoS ONE 9:e105549. https://doi.org/10.1371/journal.pone.0105549

  56. Surovtsev V, Borzenkov V, Levchuk V (2015) Purification of bacteriocins by chromatographic methods. Appl Biochem Microbiol 51:881–886. https://doi.org/10.1134/s0003683815090069

    Article  CAS  Google Scholar 

  57. Bastos M, do C de F, Coelho MLV, Santos OC da S, (2015) Resistance to bacteriocins produced by Gram-positive bacteria. Microbiol 161:683–700. https://doi.org/10.1099/mic.0.082289-0

    Article  CAS  Google Scholar 

  58. Yildirim Z, Winters DK, Johnson MG (1999) Purification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454. J Appl Microbiol 86(1):45–54. https://doi.org/10.1046/j.1365-2672.1999.00629.x

    Article  CAS  PubMed  Google Scholar 

  59. Todorov SD, Dicks LMT (2006) Parameters affecting the adsorption of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum 423 isolated from sorghum beer. Biotechnol J 1(4):405–409. https://doi.org/10.1002/biot.200500026

  60. Bhunia AK, Johnson MC, Ray B, Kalchayanad N (1991) Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. J Appl Bacteriol 70:23–25. https://doi.org/10.1111/j.1365-2672.1991.tb03782.x

    Article  Google Scholar 

  61. Bhunia AK, Johnson MC, Ray B (1988) Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococctls acidilactici. J Appl Bacteriol 65:261–268. https://doi.org/10.1111/j.1365-2672.1988.tb01893.x

  62. Pingitore EV, Todorov SD, Sesma F, Franco BDGM (2012) Application of bacteriocinogenic Enterococcus mundtii CRL35 and Enterococcus faecium ST88Ch in the control of Listeria monocytogenes in fresh Minas cheese. Food Microbiol 32(1):38–47. https://doi.org/10.1016/j.fm.2012.04.005

    Article  Google Scholar 

  63. Furtado DN, Favaro L, Nero LA, Franco BDGM, Todorov SD (2019) Nisin production by Enterococcus hirae DF105Mi isolated from Brazilian goat milk. Prob Antim Prot 11(4):1391–1402. https://doi.org/10.1007/s12602-019-09553-6

    Article  CAS  Google Scholar 

  64. Minahk CJ, Dupuy F, Morero RD (2004) Enhancement of antibiotic activity by sub-lethal concentrations of enterocin CRL35. J Antimicrob Chemother 53(2):240–246. https://doi.org/10.1093/jac/dkh079

    Article  CAS  PubMed  Google Scholar 

  65. Marugg JD, Gonzalez CF, Kunka BS, Ledeboer AM, Pucci MJ, Toonen MY, Walker SA, Zoetmulder LC, Vandenbergh PA (1992) Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl Environ Microbiol 58(8):2360–2367. https://doi.org/10.1128/aem.58.8.2360-2367.1992

  66. Henderson JT, Chopko AL, van Wassenaar PD (1992) Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. Arch Biochem Biophys 295(1):5–12. https://doi.org/10.1016/0003-9861(92)90480-k

  67. Daba H, Lacroix C, Huang J, Simard RE, Lemieux L (1994) Simple method of purification and sequencing of a bacteriocin produced by Pediococcus acidilactici UL5. J Appl Bacteriol 77:682–688. https://doi.org/10.1111/j.1365-2672.1994.tb02819.x

    Article  CAS  PubMed  Google Scholar 

  68. Fimland G, Eijsink VGH, Nissen-Meyer J (2002) Comparative studies of immunity proteins of pediocin-like bacteriocins. Microbiol 148(11):3661–3670. https://doi.org/10.1099/00221287-148-11-3661

    Article  CAS  Google Scholar 

  69. Bauer R, Chikindas ML, Dicks LMT (2005) Purification, partial amino acid sequence and mode of action of pediocin PD-1, a bacteriocin produced by Pediococcus damnosus NCFB1832. Int J Food Microbiol 101:17–27. https://doi.org/10.1016/j.ijfoodmicro.2004.10.040

    Article  CAS  PubMed  Google Scholar 

  70. Diep DB, Godager L, Brede D, Nes IF (2006) Data mining and characterization of a novel pediocin-like bacteriocin system from the genome of Pediococcus pentosaceus ATCC 25745. Microbiol 152(6):1649–1659. https://doi.org/10.1099/mic.0.28794-0

    Article  CAS  Google Scholar 

  71. Gonzalez CF, Kunka BS (1987) Plasmid-associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Appl Environ Microbiol 53(10):2534–2538. https://doi.org/10.1128/aem.53.10.2534-2538.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Motlagh AM, Holla S, Johnson MC, Ray B, Field RA (1992) Inhibition of Listeria spp. in sterile food system by pediocin AcH, a bacteriocin produced by Pediococcus acidilactici. J Food Protect 55(5):337–343. https://doi.org/10.4315/0362-028X-55.5.337

  73. Rodríguez JM, Martínez MI, Kok J (2002) Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit Rev Food Sci Nutr 42(2):91–121. https://doi.org/10.1080/10408690290825475

    Article  PubMed  Google Scholar 

  74. Nieto Lozano JC, Meyer JN, Sletten K, Peláz C, Nes IF (1992) Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. J Gen Microbiol 138(9):1985–1990. https://doi.org/10.1099/00221287-138-9-1985

    Article  CAS  PubMed  Google Scholar 

  75. Bukhtiyarova M, Yang R, Ray B (1994) Analysis of the pediocin AcH gene cluster from plasmid pSMB74 and its expression in a pediocin-negative Pediococcus acidilactici strain. Appl Environ Microbiol 60(9):3405–3408. https://doi.org/10.1128/aem.60.9.3405-3408.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Motlagh A, Bukhtiyarova M, Ray B (1994) Complete nucleotide sequence of pSMB 74, a plasmid encoding the production of pediocin AcH in Pediococcus acidilactici. Lett Appl Microbiol 18(6):305–312. https://doi.org/10.1111/j.1472-765X.1994.tb00876.x

    Article  CAS  PubMed  Google Scholar 

  77. Venema K, Kok J, Marugg JD, Toonen MY, Ledeboer AM, Venema G, Chikindas ML (1995) Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1.0: PedB is the immunity protein and PedD is the precursor processing enzyme. Mol Microbiol 17(3):515–522. https://doi.org/10.1111/j.1365-2958.1995.mmi_17030515.x

  78. Pucci MJ, Vedamuthu ER, Kunka BS, Vandenbergh PA (1988) Inhibition of Listeria monocytogenes by using bacteriocin PA-1 produced by Pediococcus acidilactici PAC 1.0. Appl Environ Microbiol 54(10):2349–2353. https://doi.org/10.1128/aem.54.10.2349-2353.1988

  79. Yousef AE, Luchansky JB, Degnan AJ, Doyle MP (1991) Behavior of Listeria monocytogenes in wiener exudates in the presence of Pediococcus acidilactici H or pediocin AcH during storage at 4 or 25 degrees C. Appl Environ Microbiol 57(5):1461–1467. https://doi.org/10.1128/aem.57.5.1461-1467.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Foegeding PM, Thomas AB, Pilkington DH, Klaenhammer TR (1992) Enhanced control of Listeria monocytogenes by in situ-produced pediocin during dry fermented sausage production. Appl Environ Microbiol 58(3):884–890. https://doi.org/10.1128/aem.58.3.884-890.1992.Erratum.In:ApplEnvironMicrobiol1992,58(6):2102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhu L, Zeng J, Wang J (2022) Structural basis of the immunity mechanisms of pediocin-like bacteriocins. Appl Environ Microbiol 88(13):e0048122. https://doi.org/10.1128/aem.00481-22

  82. Todorov SD, Wachsman MB, Knoetze H, Meincken M, Dicks LMT (2005) An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soy beans. Int J Antimicrob Agents 25(6):508–513. https://doi.org/10.1016/j.ijantimicag.2005.02.005

    Article  CAS  PubMed  Google Scholar 

  83. Jozala AF, De Andrade MS, De Arauz LJ, Pessoa A Jr, Penna TCV (2007) Nisin production utilizing skimmed milk aiming to reduce process cost. Appl Biochem Biotechnol 137–140(1–12):515–528. https://doi.org/10.1007/978-1-60327-181-3_43

    Article  PubMed  Google Scholar 

  84. Kaur S, Kaur S (2015) Bacteriocins as potential  anticancer agents. Front Pharmacol 6:article 272. https://doi.org/10.3389/fphar.2015.00272

Download references

Acknowledgements

The authors acknowledge the Sao Paulo University (Sao Paulo, SP, Brazil) and Handong Global University (Pohang, Republic of Korea) for providing infrastructure.

Funding

Program for Visiting Professors at the University of Sao Paulo, Sao Paulo, SP, Brazil (2016.1.920.93).

Author information

Authors and Affiliations

Authors

Contributions

Concept: SDT, IVI. Experimental work: SDT, MW. Data analysis: SDT, ET, MW, MV, IVI. Funds: SDT. Writing of the manuscript: SDT. Corrections and editing: MV, ET, IVI, SDT.

Corresponding author

Correspondence to Svetoslav Dimitrov Todorov.

Ethics declarations

Ethical Approval

This article does not contain any studies with human or animal subjects.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todorov, S.D., Wachsman, M., Tomé, E. et al. Plasmid-Associated Bacteriocin Produced by Pediococcus pentosaceus Isolated from Smoked Salmon: Partial Characterization and Some Aspects of his Mode of Action. Probiotics & Antimicro. Prot. 16, 394–412 (2024). https://doi.org/10.1007/s12602-023-10059-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-023-10059-5

Keywords

Navigation