Skip to main content

Advertisement

Log in

In Vitro Human Gastrointestinal Tract Simulation Systems: A Panoramic Review

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Simulated human gastrointestinal (GI) tract systems are important for their applications in the fields of probiotics, nutrition and health. To date, various in vitro gut systems have been available to study GI tract dynamics and its association with health. In contrast to in vivo investigations, which are constrained by ethical considerations, in vitro models have several benefits despite the challenges involved in mimicking the GI environment. These in vitro models can be used for a range of research, from simple to dynamic, with one compartment to several compartments. In this review, we present a panoramic development of in vitro GI models for the first time through an evolutionary timeline. We tried to provide insight on designing an in vitro gut model, especially for novices. Latest developments and scope for improvement based on the limitations of the existing models were highlighted. In conclusion, designing an in vitro GI model suitable for a particular application is a multifaceted task. The bio-mimicking of the GI tract specific to geometrical, anatomical and mechanical features remains a challenge for the development of effective in vitro GI models. Advances in computer technology, artificial intelligence and nanotechnology are going to be revolutionary for further development. Besides this, in silico high-throughput technologies and miniaturisation are key players in the success of making in vitro modelling cost-effective and reducing the burden of in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data collected to write this review will be made available by the authors without undue reservation to any qualified researchers.

References

  1. Sensoy I (2021) A review on the food digestion in the digestive tract and the used in vitro models. Curr Res Food Sci 4:308–319. https://doi.org/10.1016/j.crfs.2021.04.004

    Article  PubMed Central  PubMed  Google Scholar 

  2. Fournier E, Roussel C, Dominicis A, Ley D, Peyron M, Collado V et al (2022) In vitro models of gut digestion across childhood: current developments, challenges and future trends. Biotechnol Adv 54:107796. https://doi.org/10.1016/j.biotechadv.2021.107796

  3. Lucas-González R, Viuda-Martos M, Pérez-Alvarez JA, Fernández-López J (2018) In vitro digestion models suitable for foods: opportunities for new fields of application and challenges. Food Res Int 107:423–436. https://doi.org/10.1016/j.foodres.2018.02.055

    Article  CAS  PubMed  Google Scholar 

  4. Nissen L, Casciano F, Gianotti A (2020) Intestinal fermentation in vitro models to study food-induced gut microbiota shift: an updated review. FEMS Microbiol Lett 367:fnaa097. https://doi.org/10.1093/femsle/fnaa097

  5. Ahire JJ, Kashikar MS, Madempudi RS (2020) Survival and germination of Bacillus clausii UBBC07 spores in in vitro human gastrointestinal tract simulation model and evaluation of clausin production. Front Microbiol 11:1010. https://doi.org/10.3389/fmicb.2020.01010

    Article  PubMed Central  PubMed  Google Scholar 

  6. Ahire JJ, Neelamraju J, Madempudi RS (2020) Behavior of Bacillus coagulans Unique IS2 spores during passage through the Simulator of Human Intestinal Microbial Ecosystem (SHIME) model. LWT-Food Sci Technol 124:109196. https://doi.org/10.1016/j.lwt.2020.109196

  7. Ahire JJ, Mokashe NU, Kashikar MS, Madempudi RS (2022) Survival of Limosilactobacillus reuteri UBLRu-87 during passage through the in vitro gut model system. LWT-Food Sci Technol 164:113652. https://doi.org/10.1016/j.lwt.2022.113652

  8. Pham VT, Mohajeri MH (2018) The application of in vitro human intestinal models on the screening and development of pre-and probiotics. Benef Microbes 9:725–742. https://doi.org/10.3920/BM2017.0164

    Article  CAS  PubMed  Google Scholar 

  9. Kostewicz ES, Abrahamsson B, Brewster M, Brouwers J, Butler J, Carlert S et al (2014) In vitro models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci 57:342–366. https://doi.org/10.1016/j.ejps.2013.08.024

    Article  CAS  PubMed  Google Scholar 

  10. Li C, Yu W, Wu P, Chen XD (2020) Current in vitro digestion systems for understanding food digestion in human upper gastrointestinal tract. Trends Food Sci Technol 96:114–126. https://doi.org/10.1016/j.tifs.2019.12.015

    Article  CAS  Google Scholar 

  11. Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C et al (2014) A standardised static in vitro digestion method suitable for food – an international consensus. Food Funct 5:1113–1124. https://doi.org/10.1039/C3FO60702J

    Article  CAS  PubMed  Google Scholar 

  12. Minekus M, Marteau P, Havenaar R, Veld J (1995) A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Altern Lab Anim 23:197–209. https://doi.org/10.1177/026119299502300205

    Article  Google Scholar 

  13. Clark RL, Connors BM, Stevenson DM, Hromada SE, Hamilton JJ, Amador-Noguez D et al (2021) Design of synthetic human gut microbiome assembly and butyrate production. Nat Commun 12:1–16. https://doi.org/10.1038/s41467-021-22938-y

    Article  CAS  Google Scholar 

  14. Morrison AB, Campbell JA (1960) The relationship between physiological availability of salicylates and riboflavin and in vitro disintegration time of enteric coated tablets. J Am Pharm Assoc 49:473–478. https://doi.org/10.1002/jps.3030490717

    Article  CAS  Google Scholar 

  15. Cressman WA, Janicki CA, Johnson PC, Doluisio JT, Braun GA (1969) In vitro dissolution rates of aminorex dosage forms and their correlation with in vivo availability. J Pharm Sci 58:1516–1520. https://doi.org/10.1002/jps.2600581220

    Article  CAS  PubMed  Google Scholar 

  16. Davis RE, Hartman CW, Fincher JH (1971) Dialysis of ephedrine and pentobarbital from whole human saliva and simulated saliva. J Pharm Sci 60:429–432. https://doi.org/10.1002/jps.2600600318

    Article  CAS  PubMed  Google Scholar 

  17. Braybrooks MP, Barry BW, Abbs ET (1975) The effect of mucin on the bioavailability of tetracycline from the gastrointestinal tract; in vivo, in vitro correlations. J Pharm Pharmacol 27:508–515. https://doi.org/10.1111/j.2042-7158.1975.tb09493.x

    Article  CAS  PubMed  Google Scholar 

  18. Miller TL, Wolin MJ (1981) Fermentation by the human large intestine microbial community in an in vitro semicontinuous culture system. Appl Environ Microbiol 42:400–407. https://doi.org/10.1128/aem.42.3.400-407.1981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Macfarlane GT, Cummings JH, Macfarlane S, Gibson GR (1989) Influence of retention time on degradation of pancreatic enzymes by human colonic bacteria grown in a 3-stage continuous culture system. J Appl Bacteriol 67:521–527. https://doi.org/10.1111/j.1365-2672.1989.tb02524.x

    Article  CAS  Google Scholar 

  20. Molly K, Vande Woestyne M, Verstraete W (1993) Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 39:254–258. https://doi.org/10.1007/BF00228615

    Article  CAS  PubMed  Google Scholar 

  21. Van den Abbeele P, Roos S, Eeckhaut V, MacKenzie DA, Derde M, Verstraete W et al (2012) Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb Biotechnol 5:106–115. https://doi.org/10.1111/j.1751-7915.2011.00308.x

    Article  CAS  PubMed  Google Scholar 

  22. Possemiers S, Pinheiro I, Verhelst A, Van den Abbeele P, Maignien L, Laukens D et al (2013) A dried yeast fermentate selectively modulates both the luminal and mucosal gut microbiota and protects against inflammation, as studied in an integrated in vitro approach. J Agri Food Chem 61:9380–9392. https://doi.org/10.1021/jf402137r

    Article  CAS  Google Scholar 

  23. Marzorati M, Vanhoecke B, De Ryck T, Sadaghian Sadabad M, Pinheiro I, Possemiers S et al (2014) The HMI™ module: a new tool to study the host-microbiota interaction in the human gastrointestinal tract in vitro. BMC Microbiol 14:1–14. https://doi.org/10.1186/1471-2180-14-133

    Article  Google Scholar 

  24. Minekus M, Smeets-Peeters M, Bernalier A, Marol-Bonnin S, Havenaar R, Marteau P et al (1999) A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl Microbiol Biotechnol 53:108–114. https://doi.org/10.1007/s002530051622

    Article  CAS  PubMed  Google Scholar 

  25. Cordonnier C, Thévenot J, Etienne-Mesmin L, Denis S, Alric M, Livrelli V et al (2015) Dynamic in vitro models of the human gastrointestinal tract as relevant tools to assess the survival of probiotic strains and their interactions with gut microbiota. Microorganisms 3:725–745. https://doi.org/10.3390/microorganisms3040725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wickham M, Faulks R (2007) WO/2007/010238 WIPO. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2007010238. Accessed 14 Nov 2022

  27. Kong F, Singh RP (2010) A human gastric simulator (HGS) to study food digestion in human stomach. J Food Sci 75:E627–E635. https://doi.org/10.1111/j.1750-3841.2010.01856.x

    Article  CAS  PubMed  Google Scholar 

  28. Guerra A, Denis S, le Goff O, Sicardi V, François O, Yao AF et al (2016) Development and validation of a new dynamic computer-controlled model of the human stomach and small intestine. Biotechnol Bioeng 113:1325–1335. https://doi.org/10.1002/bit.25890

    Article  CAS  PubMed  Google Scholar 

  29. Chen L, Xu Y, Fan T, Liao Z, Wu P, Wu X et al (2016) Gastric emptying and morphology of a ‘near real’ in vitro human stomach model (RD-IV-HSM). J Food Eng 183:1–8. https://doi.org/10.1016/j.jfoodeng.2016.02.025

    Article  Google Scholar 

  30. Barroso E, Cueva C, Peláez C, Martínez-Cuesta MC, Requena T (2015) Development of human colonic microbiota in the computer-controlled dynamic SIMulator of the GastroIntestinal tract SIMGI. LWT-Food Sci Technol 61:283–289. https://doi.org/10.1016/j.lwt.2014.12.014

    Article  CAS  Google Scholar 

  31. Wright ND, Kong F, Williams BS, Fortner L (2016) A human duodenum model (HDM) to study transport and digestion of intestinal contents. J Food Eng 171:129–136. https://doi.org/10.1016/j.jfoodeng.2015.10.013

    Article  CAS  Google Scholar 

  32. Wang P, Rubio A, Duncan H, Donachie E, Holtrop G, Lo G et al (2020) Pivotal roles for pH, lactate, and lactate-utilizing bacteria in the stability of a human colonic microbial ecosystem. mSystems 5:e00645–20. https://doi.org/10.1128/mSystems.00645-20

  33. Berner A, Fuentes S, Dostal A, Payne AN, Vazquez Gutierrez P, Chassard C et al (2013) Novel Polyfermentor Intestinal Model (PolyFermS) for controlled ecological studies: validation and effect of pH. PloS One 8:e77772. https://doi.org/10.1371/journal.pone.0077772

  34. Fehlbaum S, Chassard C, Haug MC, Fourmestraux C, Derrien M, Lacroix C (2015) Design and investigation of PolyFermS in vitro continuous fermentation models inoculated with immobilized fecal microbiota mimicking the elderly colon. PLoS One 10:e0142793. https://doi.org/10.1371/journal.pone.0142793

  35. Cieplak T, Wiese M, Nielsen S, Van de Wiele T, van den Berg F, Nielsen DS (2018) The smallest intestine (TSI)—a low volume in vitro model of the small intestine with increased throughput. FEMS Microbiol Lett 365:fny231. https://doi.org/10.1093/femsle/fny231

  36. Wiese M, Khakimov B, Nielsen S, Sørensen H, van den Berg F, Nielsen DS (2018) CoMiniGut—a small volume in vitro colon model for the screening of gut microbial fermentation processes. PeerJ 6:e4268. https://doi.org/10.7717/peerj.4268

  37. Ekins S, Rose J (2002) In silico ADME/Tox: the state of the art. J Mol Graph Model 20:305–309. https://doi.org/10.1016/S1093-3263(01)00127-9

    Article  CAS  PubMed  Google Scholar 

  38. Yamashita F, Hashida M (2004) In silico approaches for predicting ADME properties of drugs. Drug Metab Pharmacokinet 19:327–338. https://doi.org/10.2133/dmpk.19.327

    Article  CAS  PubMed  Google Scholar 

  39. Kamerman DJ, Wilkinson MH (2002) In silico modelling of the human intestinal microflora. International Conference on Computational Science. Springer, Berlin, Heidelberg, pp 117–126

    Google Scholar 

  40. Jong P, Vissers MM, van der Meer R, Bovee-Oudenhoven IM (2007) In silico model as a tool for interpretation of intestinal infection studies. Appl Environ Microbiol 73:508–515. https://doi.org/10.1128/2FAEM.01299-06

  41. Jamei M, Marciniak S, Feng K, Barnett A, Tucker G, Rostami-Hodjegan A (2009) The Simcyp® population-based ADME simulator. Expert Opin Drug Metab Toxicol 5:211–223. https://doi.org/10.1517/17425250802691074

    Article  CAS  PubMed  Google Scholar 

  42. Sjögren E, Westergren J, Grant I, Hanisch G, Lindfors L, Lennernäs H et al (2013) In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim. Eur J Pharm Sci 49:679–698. https://doi.org/10.1016/j.ejps.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  43. Barth BB, Henriquez CS, Grill WM, Shen X (2017) Electrical stimulation of gut motility guided by an in silico model. J Neural Eng 14:066010. https://doi.org/10.1088/1741-2552/aa86c8

  44. Lin C, Culver J, Weston B, Underhill E, Gorky J, Dhurjati P (2018) GutLogo: agent-based modeling framework to investigate spatial and temporal dynamics in the gut microbiome. PLoS One 13:e0207072. https://doi.org/10.1371/journal.pone.0207072

  45. Tanner SA, Chassard C, Zihler Berner A, Lacroix C (2014) Synergistic effects of Bifidobacterium thermophilum RBL67 and selected prebiotics on inhibition of Salmonella colonization in the swine proximal colon PolyFermS model. Gut Pathog 6:1–12. https://doi.org/10.1186/s13099-014-0044-y

    Article  CAS  Google Scholar 

  46. Vamanu E (2017) Effect of gastric and small intestinal digestion on lactic acid bacteria activity in a GIS1 simulator. Saudi J Biol Sci 24:1453–1457. https://doi.org/10.1016/j.sjbs.2015.06.028

    Article  CAS  PubMed  Google Scholar 

  47. Ceuppens S, Uyttendaele M, Drieskens K, Heyndrickx M, Rajkovic A, Boon N et al (2012) Survival and germination of Bacillus cereus spores without outgrowth or enterotoxin production during in vitro simulation of gastrointestinal transit. Appl Environ Microbiol 78:7698–7705. https://doi.org/10.1128/AEM.02142-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Molly K, Woestyne MV, Smet ID, Verstraete W (1994) Validation of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) reactor using microorganism-associated activities. Microb Ecol Health Dis 7:191–200. https://doi.org/10.3109/08910609409141354

    Article  Google Scholar 

  49. Martoni C, Bhathena J, Jones ML, Urbanska AM, Chen H, Prakash S (2007) Investigation of microencapsulated BSH active Lactobacillus in the simulated human GI tract. J Biomed Biotechnol 2007:13684. https://doi.org/10.1155/2007/13684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Oomen AG, Rompelberg CJM, Bruil MA, Dobbe CJG, Pereboom DPKH, Sips AJAM (2003) Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Arch Environ Contam Toxicol 44:0281–0287. https://doi.org/10.1007/s00244-002-1278-0

    Article  CAS  Google Scholar 

  51. Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, Ballance S et al (2019) INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc 14:991–1014. https://doi.org/10.1038/s41596-018-0119-1

    Article  CAS  PubMed  Google Scholar 

  52. Van den Abeele J, Rubbens J, Brouwers J, Augustijns P (2017) The dynamic gastric environment and its impact on drug and formulation behaviour. Eur J Pharm Sci 96:207–231. https://doi.org/10.1016/j.ejps.2016.08.060

    Article  CAS  PubMed  Google Scholar 

  53. Humphrey SP, Williamson RT (2001) A review of saliva: normal composition, flow, and function. J Prosthet Dent 85:162–169. https://doi.org/10.1067/mpr.2001.113778

    Article  CAS  PubMed  Google Scholar 

  54. Hedren E, Diaz V, Svanberg U (2002) Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method. Eur J Clin Nutr 56:425–430. https://doi.org/10.1038/sj.ejcn.1601329

    Article  CAS  PubMed  Google Scholar 

  55. Passannanti F, Nigro F, Gallo M, Tornatore F, Frasso A, Saccone G et al (2017) In vitro dynamic model simulating the digestive tract of 6-month-old infants. PLoS One 12:e0189807. https://doi.org/10.1371/journal.pone.0189807

  56. Cueva C, Gil-Sánchez I, Tamargo A, Miralles B, Crespo J, Bartolomé B et al (2019) Gastrointestinal digestion of food-use silver nanoparticles in the dynamic SIMulator of the GastroIntestinal tract (simgi®). Impact on human gut microbiota. Food Chem Toxicol 132:110657. https://doi.org/10.1016/j.fct.2019.110657

  57. Farré R, Tack J (2013) Food and symptom generation in functional gastrointestinal disorders: physiological aspects. Am J Gastroenterol 108:698–706. https://doi.org/10.1038/ajg.2013.24

    Article  PubMed  Google Scholar 

  58. Nugent SG, Kumar D, Rampton DS, Evans DF (2001) Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut 48:571–577. https://doi.org/10.1136/gut.48.4.571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Fallingborg J (1999) Intraluminal pH of the human gastrointestinal tract. Dan Med Bull 46:183–196

    CAS  PubMed  Google Scholar 

  60. Maurer AH (2016) Gastrointestinal motility, part 2: small-bowel and colon transit. J Nucl Med Technol 44:12–18. https://doi.org/10.2967/jnumed.113.134551

    Article  CAS  PubMed  Google Scholar 

  61. Schneyer LH, Young JA, Schneyer CA (1972) Salivary secretion of electrolytes. Physiol Rev 52:720–777. https://doi.org/10.1152/physrev.1972.52.3.720

    Article  CAS  PubMed  Google Scholar 

  62. Varga G (2015) Physiology of the salivary glands. Surgery 33:581–586. https://doi.org/10.1016/j.mpsur.2015.09.003

    Article  Google Scholar 

  63. Bornhorst GM, Singh RP (2014) Gastric digestion in vivo and in vitro: how the structural aspects of food influence the digestion process. Annu Rev Food Sci Technol 5:111–132. https://doi.org/10.1146/annurev-food-030713-092346

    Article  CAS  PubMed  Google Scholar 

  64. Campbell J, Berry J, Liang Y (2019) Anatomy and physiology of the small intestine. In: Yeo CJ (ed) Shackelford’s surgery of the alimentary tract. Elsevier, pp 817–841

    Chapter  Google Scholar 

  65. Klindt-Toldam S, Larsen SK, Saaby L, Olsen LR, Svenstrup G, Müllertz A et al (2016) Survival of Lactobacillus acidophilus NCFM® and Bifidobacterium lactis HN019 encapsulated in chocolate during in vitro simulated passage of the upper gastrointestinal tract. LWT-Food Sci Technol 74:404–410. https://doi.org/10.1016/j.lwt.2016.07.053

    Article  CAS  Google Scholar 

  66. Denaro M, Smeriglio A, Trombetta D (2021) Antioxidant and anti-inflammatory activity of Citrus flavanones mix and its stability after in vitro simulated digestion. Antioxidants 10:140. https://doi.org/10.3390/antiox10020140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Byrd JC, Bresalier RS (2000) Alterations in gastric mucin synthesis by Helicobacter pylori. World J Gastroenterol 6:475. https://doi.org/10.3748/2Fwjg.v6.i4.475

  68. McConnell EL, Fadda HM, Basit AW (2008) Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm 364:213–226. https://doi.org/10.1016/j.ijpharm.2008.05.012

    Article  CAS  PubMed  Google Scholar 

  69. Curto AL, Pitino I, Mandalari G, Dainty JR, Faulks RM, Wickham MSJ (2011) Survival of probiotic lactobacilli in the upper gastrointestinal tract using an in vitro gastric model of digestion. Food Microbiol 28:1359–1366. https://doi.org/10.1016/j.fm.2011.06.007

    Article  PubMed  Google Scholar 

  70. Rémond D, Shahar DR, Gille D, Pinto P, Kachal J, Peyron MA et al (2015) Understanding the gastrointestinal tract of the elderly to develop dietary solutions that prevent malnutrition. Oncotarget 6:13858. https://doi.org/10.18632/oncotarget.4030

  71. Braghetto I, Davanzo C, Korn O, Csendes A, Valladares H, Herrera E et al (2009) Scintigraphic evaluation of gastric emptying in obese patients submitted to sleeve gastrectomy compared to normal subjects. Obes Surg 19:1515–1521. https://doi.org/10.1007/s11695-009-9954-z

    Article  PubMed  Google Scholar 

  72. Szarka LA, Camilleri M (2012) Methods for the assessment of small-bowel and colonic transit. Semin Nucl Med 42:113–123. https://doi.org/10.1053/j.semnuclmed.2011.10.004

    Article  PubMed Central  PubMed  Google Scholar 

  73. Dekaboruah E, Suryavanshi MV, Chettri D, Verma AK (2020) Human microbiome: an academic update on human body site specific surveillance and its possible role. Arch Microbiol 202:2147–2167. https://doi.org/10.1007/s00203-020-01931-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Ragonnaud E, Biragyn A (2021) Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun Ageing 18:2. https://doi.org/10.1186/s12979-020-00213-w

    Article  PubMed Central  PubMed  Google Scholar 

  75. Wall R, Ross RP, Ryan CA, Hussey S, Murphy B, Fitzgerald GF et al (2009) Role of gut microbiota in early infant development. Clin Med Insights Pediatr 3:S2008. https://doi.org/10.4137/CMPed.S2008

    Article  Google Scholar 

  76. Valeur J, Berstad A (2010) Colonic fermentation: a neglected topic in human physiology education. Adv Physiol Educ 34:22–22. https://doi.org/10.1152/advan.00103.2009

    Article  PubMed  Google Scholar 

  77. Shanahan F (2013) The colonic microbiota in health and disease. Curr Opin Gastroenterol 29:49–54. https://doi.org/10.1097/MOG.0b013e32835a3493

    Article  CAS  PubMed  Google Scholar 

  78. Rodes L, Coussa-Charley M, Marinescu D, Paul A, Fakhoury M, Abbasi S et al (2013) Design of a novel gut bacterial adhesion model for probiotic applications. Artif Cells Nanomed Biotechnol 41:116–124. https://doi.org/10.3109/10731199.2012.712047

    Article  CAS  PubMed  Google Scholar 

  79. Venema K, Van den Abbeele P (2013) Experimental models of the gut microbiome. Best Pract Res Clin Gastroenterol 27:115–126. https://doi.org/10.1016/j.bpg.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  80. Martin G, Kolida S, Marchesi JR, Want E, Sidaway JE, Swann JR (2018) In vitro modeling of bile acid processing by the human fecal microbiota. Front Microbiol 9:1153. https://doi.org/10.3389/fmicb.2018.01153

    Article  PubMed Central  PubMed  Google Scholar 

  81. Payne AN, Zihler A, Chassard C, Lacroix C (2012) Advances and perspectives in in vitro human gut fermentation modeling. Trends Biotechnol 30:17–25. https://doi.org/10.1016/j.tibtech.2011.06.011

    Article  CAS  PubMed  Google Scholar 

  82. Barros L, Retamal C, Torres H, Zúñiga RN, Troncoso E (2016) Development of an in vitro mechanical gastric system (IMGS) with realistic peristalsis to assess lipid digestibility. Food Res Int 90:216–225. https://doi.org/10.1016/j.foodres.2016.10.049

    Article  CAS  PubMed  Google Scholar 

  83. Liu W, Fu D, Zhang X, Chai J, Tian S, Han J (2019) Development and validation of a new artificial gastric digestive system. Food Res Int 122:183–190. https://doi.org/10.1016/j.foodres.2019.04.015

    Article  CAS  PubMed  Google Scholar 

  84. Li Y, Fortner L, Kong F (2019) Development of a Gastric Simulation Model (GSM) incorporating gastric geometry and peristalsis for food digestion study. Food Res Int 125:108598. https://doi.org/10.1016/j.foodres.2019.108598

  85. Blutt SE, Crawford SE, Ramani S, Zou WY, Estes MK (2018) Engineered human gastrointestinal cultures to study the microbiome and infectious diseases. Cell Mol Gastroenterol Hepatol 5:241–251. https://doi.org/10.1016/j.jcmgh.2017.12.001

    Article  PubMed  Google Scholar 

  86. Min S, Kim S, Cho SW (2020) Gastrointestinal tract modeling using organoids engineered with cellular and microbiota niches. Exp Mol Med 52:227–237. https://doi.org/10.1038/s12276-020-0386-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Costa J, Ahluwalia A (2019) Advances and current challenges in intestinal in vitro model engineering: a digest. Front Bioeng Biotechnol 7:144. https://doi.org/10.3389/fbioe.2019.00144

    Article  PubMed Central  PubMed  Google Scholar 

  88. Bricks T, Paullier P, Legendre A, Fleury MJ, Zeller P, Merlier F et al (2014) Development of a new microfluidic platform integrating co-cultures of intestinal and liver cell lines. Toxicol In-vitro 28:885–895. https://doi.org/10.1016/j.tiv.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  89. Sung JH, Yu J, Luo D, Shuler ML, March JC (2011) Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11:389–392. https://doi.org/10.1039/C0LC00273A

    Article  CAS  PubMed  Google Scholar 

  90. Shim KY, Lee D, Han J, Nguyen NT, Park S, Sung JH (2017) Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomed Microdevices 19:1–10. https://doi.org/10.1007/s10544-017-0179-y

    Article  CAS  Google Scholar 

  91. Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165–2174. https://doi.org/10.1039/c2lc40074j

    Article  CAS  PubMed  Google Scholar 

  92. Waclawiková B, Codutti A, Alim K, El Aidy S (2022) Gut microbiota-motility interregulation: insights from in vivo, ex vivo and in silico studies. Gut Microbes 14:1997296. https://doi.org/10.1080/19490976.2021.1997296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Molina Ortiz JP, McClure DD, Shanahan ER, Dehghani F, Holmes AJ, Read MN (2021) Enabling rational gut microbiome manipulations by understanding gut ecology through experimentally-evidenced in silico models. Gut Microbes 13:1965698. https://doi.org/10.1080/19490976.2021.1965698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Sen P, Orešič M (2019) Metabolic modeling of human gut microbiota on a genome scale: an overview. Metabolites 9:22. https://doi.org/10.3390/metabo9020022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Henson MA (2021) Interrogation of the perturbed gut microbiota in gouty arthritis patients through in silico metabolic modeling. Eng Life Sci 21:489–501. https://doi.org/10.1002/elsc.202100003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Mandalari G, Adel-Patient K, Barkholt V, Baro C, Bennett L, Bublin M et al (2009) In vitro digestibility of β-casein and β-lactoglobulin under simulated human gastric and duodenal conditions: a multi-laboratory evaluation. Regul Toxicol Pharmacol 55:372–381. https://doi.org/10.1016/j.yrtph.2009.08.010

    Article  CAS  PubMed  Google Scholar 

  97. Yeo S, Lee S, Park H, Shin H, Holzapfel W, Huh CS (2016) Development of putative probiotics as feed additives: validation in a porcine-specific gastrointestinal tract model. Appl Microbiol Biotechnol 100:10043–10054. https://doi.org/10.1007/s00253-016-7812-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Cichoke AJ (1999) The complete book of enzyme therapy. Penguin, Chapter, p 2. https://patentscope.wipo.int/search/en/detail.jsf?10.1007/s12602-023-10052-ydocId=WO2007010238. Accessed 14 Nov 2022

Download references

Acknowledgements

The authors gratefully acknowledge the support of Mr. V. L. Rathi and Mr. M. Kabra at the Advanced Enzyme Technologies Limited, India.

Author information

Authors and Affiliations

Authors

Contributions

Y. D.: formal analysis, writing including review and editing, and writing of original draft. K. K. and N. B.: writing including review and editing. D. S.: review. J. J. A.: conceptualization and writing including review and editing. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Jayesh J. Ahire.

Ethics declarations

Ethics Approval

This study does not contain any work related to the participation of humans and/or animals.

Competing Interests

Y. D., K. K., N. B., D. S. and J. J. A. were employed by the Advanced Enzyme Technologies Limited. This does not alter our adherence to journal policies on sharing data and materials.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, Y., Kanojiya, K., Bhingardeve, N. et al. In Vitro Human Gastrointestinal Tract Simulation Systems: A Panoramic Review. Probiotics & Antimicro. Prot. 16, 501–518 (2024). https://doi.org/10.1007/s12602-023-10052-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-023-10052-y

Keywords

Navigation