Skip to main content
Log in

Assessment of Genomic and Metabolic Characteristics of Cholesterol-Reducing and GABA Producer Limosilactobacillus fermentum AGA52 Isolated from Lactic Acid Fermented Shalgam Based on “In Silico” and “In Vitro” Approaches

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

This study aimed to characterize the genomic and metabolic properties of a novel Lb. fermentum strain AGA52 which was isolated from a lactic acid fermented beverage called “shalgam.” The genome size of AGA52 was 2,001,184 bp, which is predicted to carry 2024 genes, including 50 tRNAs, 3 rRNAs, 3 ncRNAs, 15 CRISPR repeats, 14 CRISPR spacers, and 1 CRISPR array. The genome has a GC content of 51.82% including 95 predicted pseudogenes, 56 complete or partial transposases, and 2 intact prophages. The similarity of the clusters of orthologous groups (COG) was analyzed by comparison with the other Lb. fermentum strains. The detected resistome on the genome of AGA52 was found to be intrinsic originated. Besides, it has been determined that AGA52 has an obligate heterofermentative carbohydrate metabolism due to the absence of the 1-phosphofructokinase (pfK) enzyme. Furthermore, the strain is found to have a better antioxidant capacity and to be tolerant to gastrointestinal simulated conditions. It was also observed that the AGA52 has antimicrobial activity against Yersinia enterocolitica ATCC9610, Bacillus cereus ATCC33019, Salmonella enterica sv. Typhimurium, Escherichia coli O157:h7 ATCC43897, Listeria monocytogenes ATCC7644, Klebsiella pneumoniae ATCC13883, and Proteus vulgaris ATCC8427. Additionally, AGA52 exhibited 42.74 ± 4.82% adherence to HT29 cells. Cholesterol assimilation (33.9 ± 0.005%) and GABA production capacities were also confirmed by “in silico” and “in vitro.” Overall, the investigation of genomic and metabolic features of the AGA52 revealed that is a potential psychobiotic and probiotic dietary supplement candidate and can bring functional benefits to the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Seddik HA, Bendali F, Gancel F, Fliss I, Spano G, Drider D (2017) Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrob Proteins 9(2):111–122. https://doi.org/10.1007/s12602-017-9264-z

    Article  PubMed  Google Scholar 

  2. Buron-Moles G, Chailyan A, Dolejs I, Forster J, Miks MH (2019) Uncovering carbohydrate metabolism through a genotype-phenotype association study of 56 lactic acid bacteria genomes. Appl Microbiol Biotechnol 103(7):3135–3152. https://doi.org/10.1007/s00253-019-09701-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bangar SP, Suri S, Trif M, Ozogul F (2022) Organic acids production from lactic acid bacteria: a preservation approach. Food Biosci 46:101615

    Article  Google Scholar 

  4. Tamang JP, Shin D-H, Jung S-J, Chae S-W (2016) Functional properties of microorganisms in fermented foods. Front Microbiol 7:578

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jiménez E, Langa S, Martín V, Arroyo R, Martín R, Fernández L, et al (2010) Complete genome sequence of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk. J Bacteriol Res 192(18):4800

  6. Erol I, Kotil SE, Fidan O, Yetiman AE, Durdagi S, Ortakci F (2021) In silico analysis of bacteriocins from lactic acid bacteria against SARS-CoV-2. Probiotics Antimicrob 1–13

  7. Sanders ME, Akkermans LM, Haller D, Hammerman C, Heimbach JT, Hörmannsperger G et al (2010) Safety assessment of probiotics for human use. Gut microbes 1(3):164–185

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zheng J, Wittouck S, Salvetti E, Franz CM, Harris H, Mattarelli P et al (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70(4):2782–2858

    Article  CAS  PubMed  Google Scholar 

  9. D’ambrosio S, Ventrone M, Fusco A, Casillo A, Dabous A, Cammarota M et al (2022) Limosilactobacillus fermentum from buffalo milk is suitable for potential biotechnological process development and inhibits Helicobacter pylori in a gastric epithelial cell model. Biotechnology Reports 34:e00732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Araújo Henriques Ferreira G, Magnani M, Cabral L, Brandão LR, Noronha MF, de Campos Cruz J, et al (2022) Potentially probiotic Limosilactobacillus fermentum fruit-derived strains alleviate cardiometabolic disorders and gut microbiota impairment in male rats fed a high-Fat diet. Probiotics Antimicrob 14(2):349–59

  11. de Luna Freire MO, do Nascimento LCP, de Oliveira KÁR, de Oliveira AM, dos Santos Lima M, Napoleão TH, et al (2021) Limosilactobacillus fermentum strains with claimed probiotic properties exert anti-oxidant and anti-inflammatory properties and prevent cardiometabolic disorder in female rats fed a high-fat diet. Probiotics Antimicrob 1–13

  12. Bhathena J, Martoni C, Kulamarva A, Tomaro-Duchesneau C, Malhotra M, Paul A et al (2013) Oral probiotic microcapsule formulation ameliorates non-alcoholic fatty liver disease in Bio F1B Golden Syrian hamsters. PLoS ONE 8(3):e58394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamamoto N, Shoji M, Hoshigami H, Watanabe K, Takatsuzu T, Yasuda S, et al (2019) Antioxidant capacity of soymilk yogurt and exopolysaccharides produced by lactic acid bacteria. Biosci Microbiota Food Health 18–017

  14. Yetiman AE, Keskin A, Darendeli BN, Kotil SE, Ortakci F, Dogan M (2022) Characterization of genomic, physiological, and probiotic features Lactiplantibacillus plantarum DY46 strain isolated from traditional lactic acid fermented shalgam beverage. Food Biosci 46:101499

    Article  CAS  Google Scholar 

  15. Paulino do Nascimento LC, Lacerda DC, Ferreira DJS, de Souza EL, de Brito Alves JL (2022) Limosilactobacillus fermentum, current evidence on the antioxidant properties and opportunities to be exploited as a probiotic microorganism. Probiotics Antimicrob 1–20

  16. Feng H, Yuan Y, Yang Z, Xing X-h, Zhang C (2021) Genome-wide genotype-phenotype associations in microbes. J Biosci Bioeng 132(1):1–8

  17. Coskun F (2017) A traditional Turkish fermented non-alcoholic beverage, “shalgam.” Beverages 3(4):49

    Article  Google Scholar 

  18. Ekinci FY, Baser GM, Özcan E, Üstündağ ÖG, Korachi M, Sofu A et al (2016) Characterization of chemical, biological, and antiproliferative properties of fermented black carrot juice, shalgam. Eur Food Res Technol 242(8):1355–1368

    Article  CAS  Google Scholar 

  19. Tanguler H, Erten H (2012) Occurrence and growth of lactic acid bacteria species during the fermentation of shalgam (salgam), a traditional Turkish fermented beverage. LWT-Food Science and Technology 46(1):36–41

    Article  CAS  Google Scholar 

  20. Agirman B, Settanni L, Erten H (2021) Effect of different mineral salt mixtures and dough extraction procedure on the physical, chemical and microbiological composition of Şalgam: a black carrot fermented beverage. Food Chem 344:128618

    Article  CAS  PubMed  Google Scholar 

  21. Tanguler H, Erten H (2012) Chemical and microbiological characteristics of shalgam (şalgam): a traditional turkish lactic acid fermented beverage. J Food Qual 35(4):298–306

    Article  CAS  Google Scholar 

  22. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A (2020) Using SPAdes de novo assembler. Curr Protoc Bioinformatics 70(1):e102

    Article  CAS  PubMed  Google Scholar 

  23. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L et al (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44(14):6614–6624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C et al (2017) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 45(D1):D535–D542

    Article  CAS  PubMed  Google Scholar 

  25. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5(1):1–6

    Article  Google Scholar 

  26. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402. https://doi.org/10.1186/1471-2164-12-402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee I, Kim YO, Park S-C, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66(2):1100–1103

    Article  CAS  PubMed  Google Scholar 

  28. Chen I-MA, Chu K, Palaniappan K, Ratner A, Huang J, Huntemann M et al (2021) The IMG/M data management and analysis system v. 6.0: new tools and advanced capabilities. Nucleic Acids Res 49(D1):D751-D63

  29. Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428(4):726–731

    Article  CAS  PubMed  Google Scholar 

  30. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z et al (2018) dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46(W1):W95–W101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu S, Zhu Z, Fu L, Niu B, Li W (2011) WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics 12(1):1–9

    Article  Google Scholar 

  32. Khan A, Mathelier A (2017) Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinformatics 18(1):1–8

    Article  Google Scholar 

  33. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y et al (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44(W1):W16–W21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V et al (2020) ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 75(12):3491–500

  35. Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A et al (2020) CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 48(D1):D517–D525

    CAS  PubMed  Google Scholar 

  36. Khan ZA, Siddiqui MF, Park S (2019) Current and emerging methods of antibiotic susceptibility testing. Diagnostics 9(2):49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. CLSI C (2012) Performance standards for antimicrobial susceptibility testing; Twenty-Second Informational Supplement

  38. Angmo K, Kumari A, Bhalla TC (2016) Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT-food Science and Technology 66:428–435

    Article  CAS  Google Scholar 

  39. Zhang L, Ma H, Kulyar MF-e-A, Pan H, Li K, Li A et al (2022) Complete genome analysis of Lactobacillus fermentum YLF016 and its probiotic characteristics. Microb Pathog 62:105212

  40. Krausova G, Hyrslova I, Hynstova I (2019) In vitro evaluation of adhesion capacity, hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains. Fermentation 5(4):100

    Article  CAS  Google Scholar 

  41. Mishra V, Prasad D (2005) Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int J Food Microbiol 103(1):109–115

    Article  PubMed  Google Scholar 

  42. Ozturk G, Yetiman AE, Dogan M (2019) The bioactive efficiency of ultrasonic extracts from acorn leaves and green walnut husks against Bacillus cereus: a hybrid approach to PCA with the Taguchi method. Journal of Food Measurement and Characterization 13(2):1257–1268

    Article  Google Scholar 

  43. Pieniz S, Andreazza R, Anghinoni T, Camargo F, Brandelli A (2014) Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control 37:251–256

    Article  CAS  Google Scholar 

  44. Rudel LL, Morris M (1973) Determination of cholesterol using o-phthalaldehyde. J Lipid Res 14(3):364–366

    Article  CAS  PubMed  Google Scholar 

  45. Brandt K, Nethery MA, O’Flaherty S, Barrangou R (2020) Genomic characterization of Lactobacillus fermentum DSM 20052. BMC Genomics 21(1):1–13

    Article  Google Scholar 

  46. Juhas M, Van Der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33(2):376–393

    Article  CAS  PubMed  Google Scholar 

  47. Yoo D, Bagon BB, Valeriano VDV, Oh JK, Kim H, Cho S et al (2017) Complete genome analysis of Lactobacillus fermentum SK152 from kimchi reveals genes associated with its antimicrobial activity.  FEMS Microbiol Lett 364(18)

  48. El-Ghaish S, Dalgalarrondo M, Choiset Y, Sitohy M, Ivanova I, Haertlé T et al (2010) Characterization of a new isolate of Lactobacillus fermentum IFO 3956 from Egyptian Ras cheese with proteolytic activity. Eur Food Res Technol 230(4):635–643

    Article  CAS  Google Scholar 

  49. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T, Pérez-Muñoz ME et al (2017) Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev 41(Supp_1):S27-S48

  50. Cox AJ, Pyne DB, Saunders PU, Fricker PA (2010) Oral administration of the probiotic Lactobacillus fermentum VRI-003 and mucosal immunity in endurance athletes. Br J Sports Med 44(4):222–226

    Article  CAS  PubMed  Google Scholar 

  51. Hammes WP, Hertel C (2006) The genera Lactobacillus and Carnobacterium. Prokaryotes. Springer;p. 320–403

  52. Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85(2):183–206

    Article  PubMed  Google Scholar 

  53. Goh YJ, Barrangou R (2019) Harnessing CRISPR-Cas systems for precision engineering of designer probiotic lactobacilli. Curr Opin Biotechnol 56:163–171

    Article  CAS  PubMed  Google Scholar 

  54. Roberts A, Barrangou R (2020) Applications of CRISPR-Cas systems in lactic acid bacteria. FEMS Microbiol Rev 44(5):523–537

    Article  CAS  PubMed  Google Scholar 

  55. Hidalgo-Cantabrana C, O’Flaherty S, Barrangou R (2017) CRISPR-based engineering of next-generation lactic acid bacteria. Curr Opin Microbiol 37:79–87

    Article  CAS  PubMed  Google Scholar 

  56. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annual Reviews in Microbiology 54(1):641–679

    Article  CAS  Google Scholar 

  57. Oechslin F, Zhu X, Dion MB, Shi R, Moineau S (2022) Phage endolysins are adapted to specific hosts and are evolutionarily dynamic. PLoS Biol 20(8):e3001740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Miller-Ensminger T, Mormando R, Maskeri L, Shapiro JW, Wolfe AJ, Putonti C (2020) Introducing Lu-1, a novel Lactobacillus jensenii phage abundant in the urogenital tract. PLoS ONE 15(6):e0234159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cahill J, Young R (2019) Phage lysis: multiple genes for multiple barriers. Adv Virus Res 103:33–70

    Article  CAS  PubMed  Google Scholar 

  60. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R et al (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci 100(4):1990–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. EFSA (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10(6):2740

  62. Deghorain M, Goffin P, Fontaine L, Mainardi J-L, Daniel R, Errington J et al (2007) Selectivity for D-lactate incorporation into the peptidoglycan precursors of Lactobacillus plantarum: role of Aad, a VanX-like D-alanyl-D-alanine dipeptidase. J Bacteriol 189(11):4332–4337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC, Torriani S et al (2019) Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl Environ Microbiol 85(1):e01738-e1818

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Z-Y, Liu C, Zhu Y-Z, Wei Y-X, Tian F, Zhao G-P et al (2012) Safety assessment of Lactobacillus plantarum JDM1 based on the complete genome. Int J Food Microbiol 153(1–2):166–170

    Article  CAS  PubMed  Google Scholar 

  65. Rozman V, Lorbeg PM, Accetto T, Matijašić BB (2020) Characterization of antimicrobial resistance in lactobacilli and bifidobacteria used as probiotics or starter cultures based on integration of phenotypic and in silico data. Int J Food Microbiol 314:108388

    Article  CAS  PubMed  Google Scholar 

  66. Walter J, Heng NC, Hammes WP, Loach DM, Tannock GW, Hertel C (2003) Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Appl Environ Microbiol 69(4):2044–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gänzle MG, Follador R (2012) Metabolism of oligosaccharides and starch in lactobacilli: a review. Front Microbiol 3:340

    Article  PubMed  PubMed Central  Google Scholar 

  68. Salvetti E, Harris HM, Felis GE, O’Toole PW (2018) Comparative genomics of the genus Lactobacillus reveals robust phylogroups that provide the basis for reclassification. Appl Environ Microbiol 84(17):e00993-e1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T et al (2008) Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res 15(3):151–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schleif R (2010) AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action. FEMS Microbiol Rev 34(5):779–796

    Article  CAS  PubMed  Google Scholar 

  71. Jiang T, Guo X, Yan J, Zhang Y, Wang Y, Zhang M et al (2017) A bacterial multidomain NAD-independent d-lactate dehydrogenase utilizes flavin adenine dinucleotide and Fe-S clusters as cofactors and quinone as an electron acceptor for d-lactate oxidization. J Bacteriol 199(22):e00342-e417

    Article  PubMed  PubMed Central  Google Scholar 

  72. Thomas LM, Harper AR, Miner WA, Ajufo HO, Branscum KM, Kao L et al (2013) Structure of Escherichia coli AdhP (ethanol-inducible dehydrogenase) with bound NAD. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 69(7):730–732

    Article  CAS  PubMed  Google Scholar 

  73. Goel A, Halami PM, Tamang JP (2020) Genome analysis of Lactobacillus plantarum isolated from some Indian fermented foods for bacteriocin production and probiotic marker genes. Front Microbiol 40

  74. Martienssen M, O R, U K (2001) Surface properties of bacteria from different wastewater treatment plants. Acta Biotechnol 21(3):207–25

  75. de Souza BMS, Borgonovi TF, Casarotti SN, Todorov SD, Penna ALB (2019) Lactobacillus casei and Lactobacillus fermentum strains isolated from mozzarella cheese: probiotic potential, safety, acidifying kinetic parameters and viability under gastrointestinal tract conditions. Probiotics and antimicrobial proteins 11(2):382–396

    Article  PubMed  Google Scholar 

  76. Chaffanel F, Charron-Bourgoin F, Soligot C, Kebouchi M, Bertin S, Payot S et al (2018) Surface proteins involved in the adhesion of Streptococcus salivarius to human intestinal epithelial cells. Appl Microbiol Biotechnol 102(6):2851–2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pan M, Kumaree KK, Shah NP (2017) Physiological changes of surface membrane in Lactobacillus with prebiotics. J Food Sci 82(3):744–750

    Article  CAS  PubMed  Google Scholar 

  78. Haddaji N, Mahdhi AK, Krifi B, Ismail MB, Bakhrouf A (2015) Change in cell surface properties of Lactobacillus casei under heat shock treatment. FEMS Microbiol Lett 362(9)

  79. Lesuffleur T, Barbat A, Dussaulx E, Zweibaum A (1990) Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Can Res 50(19):6334–6343

    CAS  Google Scholar 

  80. Li Q, Liu X, Dong M, Zhou J, Wang Y (2015) Aggregation and adhesion abilities of 18 lactic acid bacteria strains isolated from traditional fermented food. Int J Agric Policy Res 3(2):84–92

    Google Scholar 

  81. Ouwehand AC, Kirjavainen PV, Shortt C, Salminen S (1999) Probiotics: mechanisms and established effects. Int Dairy J 9(1):43–52

    Article  Google Scholar 

  82. Saarela M, Mogensen G, Fonden R, Mättö J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84(3):197–215

    Article  CAS  PubMed  Google Scholar 

  83. Gao Y, Liu Y, Sun M, Zhang H, Mu G, Tuo Y (2020) Physiological function analysis of Lactobacillus plantarum Y44 based on genotypic and phenotypic characteristics. J Dairy Sci 103(7):5916–5930

    Article  CAS  PubMed  Google Scholar 

  84. Fei Y, Li L, Zheng Y, Liu D, Zhou Q, Fu L (2018) Characterization of Lactobacillus amylolyticus L6 as potential probiotics based on genome sequence and corresponding phenotypes. LWT 90:460–468

    Article  CAS  Google Scholar 

  85. Tomaro-Duchesneau C, Jones ML, Shah D, Jain P, Saha S, Prakash S (2014) Cholesterol assimilation by Lactobacillus probiotic bacteria: an in vitro investigation. Biomed Res Int 2014

  86. Pan DD, Zeng XQ, Yan YT (2011) Characterisation of Lactobacillus fermentum SM-7 isolated from koumiss, a potential probiotic bacterium with cholesterol-lowering effects. J Sci Food Agric 91(3):512–518

    Article  CAS  PubMed  Google Scholar 

  87. Cui Y, Miao K, Niyaphorn S, Qu X (2020) Production of gamma-aminobutyric acid from lactic acid bacteria: a systematic review. Int J Mol Sci 21(3):995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wu J-Y, Matsuda T, Roberts E (1973) Purification and characterization of glutamate decarboxylase from mouse brain. J Biol Chem 248(9):3029–3034

    Article  CAS  PubMed  Google Scholar 

  89. Okada T, Sugishita T, Murakami T, Murai H, Saikusa T, Horino T, et al (2000) Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration. Nippon Shokuhin Kagaku Kogaku Kaishi 47(8):596–603

  90. Abdou AM, Higashiguchi S, Horie K, Kim M, Hatta H, Yokogoshi H (2006) Relaxation and immunity enhancement effects of γ-aminobutyric acid (GABA) administration in humans. BioFactors 26(3):201–208

    Article  CAS  PubMed  Google Scholar 

  91. Ting Wong CG, Bottiglieri T, Snead OC III (2003) Gaba, γ-hydroxybutyric acid, and neurological disease. Ann Neurol: Official Journal of the American Neurological Association and the Child Neurology Society 54(S6):S3–S12

    Article  Google Scholar 

  92. Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa H, Yamori Y (2004) Effect of a γ-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br J Nutr 92(3):411–417

    Article  CAS  PubMed  Google Scholar 

  93. Leventhal AG, Wang Y, Pu M, Zhou Y, Ma Y (2003) GABA and its agonists improved visual cortical function in senescent monkeys. Science 300(5620):812–815

    Article  CAS  PubMed  Google Scholar 

  94. Lyu C, Zhao W, Peng C, Hu S, Fang H, Hua Y et al (2018) Exploring the contributions of two glutamate decarboxylase isozymes in Lactobacillus brevis to acid resistance and γ-aminobutyric acid production. Microb Cell Fact 17(1):1–14

    Article  Google Scholar 

  95. Wu Q, Tun HM, Law Y-S, Khafipour E, Shah NP (2017) Common distribution of gad operon in Lactobacillus brevis and its GadA contributes to efficient GABA synthesis toward cytosolic near-neutral pH. Front Microbiol 8:206

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yunes R, Poluektova E, Dyachkova M, Klimina K, Kovtun A, Averina O et al (2016) GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 42:197–204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Mr. Mehmet Horzum would like to thank the Council of Higher Education of Türkiye (YÖK) due to the 100/2000 PhD scholarship program.

Funding

This study has been financially supported by Erciyes University Scientific Research Projects Coordination Unit under grant number FKB-2020–10551.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Ahmet E. Yetiman, Mehmet Horzum, and Dilek Bahar. The first draft of the manuscript was written by Ahmet E. Yetiman and was proofread by Mikail Akbulut. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ahmet Yetiman.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1.10 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yetiman, A., Horzum, M., Bahar, D. et al. Assessment of Genomic and Metabolic Characteristics of Cholesterol-Reducing and GABA Producer Limosilactobacillus fermentum AGA52 Isolated from Lactic Acid Fermented Shalgam Based on “In Silico” and “In Vitro” Approaches. Probiotics & Antimicro. Prot. 16, 334–351 (2024). https://doi.org/10.1007/s12602-022-10038-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-10038-2

Keywords

Navigation