Skip to main content
Log in

The Symbiosis Between Lactobacillus acidophilus and Inulin: Metabolic Benefits in an Obese Murine Model

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Obesity is defined as having an excess of adipose tissue and is associated with the development of diabetes, hypertension, and atherosclerosis, which are the main causes of death worldwide. Research shows that probiotics and prebiotics reduce the metabolic alterations caused by high-fat diets. Therefore, this work evaluated the effect of the incorporation of Lactobacillus acidophilus (probiotic) and inulin (prebiotic) in the diet through obesity markers (biochemical, anthropometric, and molecular markers) in an obese murine model. Four treatments were administered: (1) hypocaloric diet (HD), (2) HD + L. acidophilus, (3) HD + inulin, and (4) DH supplemented with L. acidophilus + inulin for 8 weeks. After treatment, glucose, triglycerides, total cholesterol, HDL-C, and LDL-C in plasma were determined. In addition, the total body weight and adipose tissue were taken to calculate the body mass index. Following RNA extraction from adipose tissue, the expression of PPAR gamma, PPAR alpha, and transforming growth factor beta 1 (TGF1β) was evaluated by semiquantitative PCR. All treatments showed an improvement in biochemical markers compared to the values of the obese model (p < 0.05). Optimal values for blood glucose (133.2 ± 14.3 mg/dL), triglycerides (71 ± 4.6 mg/dL), total cholesterol (48.9 ± 6 mg/dL), HDL-C (40.9 ± 4.8 mg/dL), and LDL-C (8.4 ± 1.7 mg/dL) were obtained in the mixed treatment. Regarding fat mass index (FMI), prebiotic treatment caused the greatest reduction. On the other hand, mixed treatment increased the gene expression of PPARα and TGF1β in adipose tissue with DH with L. acidophilus and inulin treatment. This work demonstrates that the use of L. acidophilus and inulin as a complementary treatment is a viable alternative for prevention and action as a complementary treatment for obesity given the reduction in biochemical parameters and anthropometric indices; these reductions were greater than those found in the classic treatment of obesity due to the induction of the expression of genes related to lipid metabolism and anti-inflammatory cytokines, which contribute to reducing the high levels of glucose, triglycerides, and cholesterol caused by obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gallaher D, Heymsfield S, Heo M, Jeb S, Murgatroyd B et al (2000) Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr 79(1):694–701. https://doi.org/10.1093/ajcn/72.3.694

    Article  Google Scholar 

  2. Sánchez F, García R, Alarcón F, Cruz M (2005) Adipocinas, tejido adiposo y su relación con células del sistema inmune. Gac Méd Mex 141(6):505–512

    Google Scholar 

  3. Kapadia R, Yi JH, Vemuganti R (2008) Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci 13:1813–1826. https://doi.org/10.2741/2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Janani C, Ranjitha Kumari BD (2015) PPAR gamma gene–a review. Diabetes Metab Syndr 9(1):46–50. https://doi.org/10.1016/j.dsx.2014.09.015

    Article  CAS  PubMed  Google Scholar 

  5. Yoon M (2010) PPARα in obesity: sex difference and estrogen involvement. PPAR Res. https://doi.org/10.1155/2010/584296

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schoonjans K, Staels B, Auwerx J (1996) The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta 1302(2):93–109. https://doi.org/10.1016/0005-2760(96)00066-5

    Article  CAS  PubMed  Google Scholar 

  7. Tugwood JD, Issemann I, Anderson RG, Bundell KR, McPheat WL, Green S (1992) The mouse peroxisome proliferator activated receptor recognizes a response element in the 5’ flanking sequence of the rat acyl CoA oxidase gene. EMBO J 11(2):433–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stienstra R, Duval C, Müller M, Kersten S (2007) PPARs, obesity, and inflammation. PPAR Res 2007:95974. https://doi.org/10.1155/2007/95974

    Article  PubMed  Google Scholar 

  9. Li MO, Flavell RA (2008) TGF-beta: a master of all T cell trades. Cell 134(3):392–404. https://doi.org/10.1016/j.cell.2008.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zamani N, Brown CW (2011) Emerging roles for the transforming growth factor-β superfamily in regulating adiposity and energy expenditure. Endocr Rev 32(3):387–403. https://doi.org/10.1210/er.2010-0018

    Article  CAS  PubMed  Google Scholar 

  11. Cox AJ, West NP, Cripps AW (2015) Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol 3(3):207–215. https://doi.org/10.1016/S2213-8587(14)70134-2

    Article  CAS  PubMed  Google Scholar 

  12. Farías M, Silva C, Rozowski J (2011) Microbiota Intestinal: Rol en Obesidad. RCHNUT 38(2):228–233. https://doi.org/10.4067/S0717-75182011000200013

    Article  Google Scholar 

  13. Yoda K, Sun X, Kawase M, Kubota A, Miyazawa K, Harata G, Hosoda M, Hiramatsu M, He F, Zemel MB (2015) A combination of probiotics and whey proteins enhances anti-obesity effects of calcium and dairy products during nutritional energy restriction in aP2-agouti transgenic mice. Br J Nutr 14;113(11):1689–1696. https://doi.org/10.1017/S0007114515000914

    Article  CAS  Google Scholar 

  14. FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Food and Agriculture Organization of the United Nations/World Health Organization, London, Ontario. www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf

  15. Rather S, Pothuraju R, Sharma R, De S, Mir N, Jangra S (2014) Anti- obesity effect of feeding probiotic dahi containing Lactobacillus casei NCDC 19 in high fat diet-induced obese mice. Int J Dairy Technol 67(4):504–509. https://doi.org/10.1111/1471-0307.12154

    Article  CAS  Google Scholar 

  16. Bagarolli RA, Tobar N, Oliveira AG, Araújo TG, Carvalho BM, Rocha GZ, Vecina JF, Calisto K, Guadagnini D, Prada PO, Santos A, Saad STO, Saad MJA (2017) Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem 50:16–25. https://doi.org/10.1016/j.jnutbio.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  17. Andersson U, Bränning C, Ahrné S, Molin G, Alenfall J, Onning G, Nyman M, Holm C (2010) Probiotics lower plasma glucose in the high-fat fed C57BL/6J mouse. Benef Microbes 1(2):189–196. https://doi.org/10.3920/BM2009.0036

    Article  CAS  PubMed  Google Scholar 

  18. Song M, Park S, Lee H, Min B, Jung S, Park S, Kim E, Oh S (2015) Effect of Lactobacillus acidophilus NS1 on plasma cholesterol levels in diet-induced obese mice. J Dairy Sci 98(3):1492–1501. https://doi.org/10.3168/jds.2014-8586

    Article  CAS  PubMed  Google Scholar 

  19. Fang C, Dong F, Thomas D, Ma H, He L, Ren J (2008) Hypertrophic cardiomyopathy in high-fat diet-induced obesity: role of suppression of forkhead transcription factor and atrophy gene transcription. Am J Physiol Heart Circ Physiol 295(3). https://doi.org/10.1152/ajpheart.00319.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yadav H, Lee JH, Lloyd J, Walter P, Rane SG (2013) Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem 288(35):25088–25097. https://doi.org/10.1074/jbc.M113.452516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Norma Oficial Mexicana NOM-062-ZOO-1999. Diario Oficial de la Federación, 11 de Noviembre del 2016. https://www.dof.gob.mx/nota_detalle.php?codigo=762506&fecha=22/08/2001#gsc.tab=

  22. Roberfroid MB (2002) Functional foods: concepts and application to inulin and oligofructose. Br J Nutr 87(Suppl 2):S139–S143. https://doi.org/10.1079/BJNBJN/2002529

    Article  CAS  PubMed  Google Scholar 

  23. Karimi G, Sabran MR, Jamaluddin R et al (2015) The anti-obesity effects of Lactobacillus casei strain Shirota versus Orlistat on high fat diet-induced obese rats. Food Nutr Res 59:29273. https://doi.org/10.3402/fnr.v59.29273

    Article  CAS  PubMed  Google Scholar 

  24. Kaplan A (1984) Glucose. Clin Chem 1032–1036

  25. Naito H (1984) Cholesterol. Clin Chem 1194–11206

  26. Bucolo G, David H (1973) Quantitative determination of serum triglycerides by the use of enzymes. Clin Chem 19(5):476–482

    Article  CAS  PubMed  Google Scholar 

  27. Okada M, Matsui H, Ito Y, Fujiwara A, Inano K (1998) Low-density lipoprotein cholesterol can be chemically measured: a new superior method. J Lab Clin Med 132(3):195–201. https://doi.org/10.1016/s0022-2143(98)90168-8

    Article  CAS  PubMed  Google Scholar 

  28. Rachid TL, Penna-de-Carvalho A, Bringhenti I, Aguila MB, Mandarim-de-Lacerda CA, Souza-Mello V (2015) PPAR-α agonist elicits metabolically active brown adipocytes and weight loss in diet-induced obese mice. Cell Biochem Funct 33(4):249–256. https://doi.org/10.1002/cbf.3111

    Article  CAS  PubMed  Google Scholar 

  29. Loyola-Baltazar C (2007) Efecto del plomo en la expresión génica de la tilapia Orechromis niloticus. Universidad Autónoma de Ciudad Juárez, Tesis de licenciatura

    Google Scholar 

  30. Fuentes M, Acosta L, Rodríguez P (2008) Perfil lipídico, protéico y glicemia en ratones NMRI, C57BL/6 y Balb/c producidos en la UCLA. Venezuela Gaceta de Ciencias Veterinarias 13(3):92–103

    Google Scholar 

  31. Martyn J, Kaneki M, Yashura S (2008) Obesity-induced insulin resistance and hyperglycemia: etiologic factors and molecular mechanisms. Anesthesiol 109(1):137–148. https://doi.org/10.1097/ALN.0b013e3181799d45

    Article  Google Scholar 

  32. Hoffler U, Hobbie K, Wilson R et al (2009) Diet-induced obesity is associated with hyperleptinemia, hyperinsulinemia, hepatic steatosis, and glomerulopathy in C57Bl/6J mice. Endocrine 36(2):311–325. https://doi.org/10.1007/s12020-009-9224-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kang J, Yun S, Park M, Park J, Jeong S, Park H (2013) Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLOS ONE 8(1). https://doi.org/10.1371/journal.pone.0054617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weitkunat K, Stuhlmann C, Postel A, Rumberger S, Fankhänel M, Woting A, Petzke KJ, Gohlke S, Schulz TJ, Blaut M, Klaus S, Schumann S (2017) Short-chain fatty acids and inulin, but not guar gum, prevent diet-induced obesity and insulin resistance through differential mechanisms in mice. Sci Rep 7(1):6109. https://doi.org/10.1038/s41598-017-06447-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim M, Shin H (1996) The water-soluble extract of chicory reduces glucose uptake from the perfused jejunum in rats. J Nutr 126(9):2236–2242p

    Article  CAS  PubMed  Google Scholar 

  36. Nawangsih E, Paryati S, Bakles Y, Yuslianti E (2017) Effect of Munghurt Lactobacillus acidophilus from green beans to blood glucose levels in alloxan-induced diabetic rats. Res J Med Plant 11(2):41–47. https://doi.org/10.3923/rjmp.2017.41.47

    Article  CAS  Google Scholar 

  37. Park S, Yang G, Kim E (2017) Lactobacillus acidophilus NS1 reduces phosphoenolpyruvate carboxylase expression by regulating HNF4α transcriptional activity. Korean J Food Sci An 37(4):529–534. https://doi.org/10.5851/kosfa.2017.37.4.529

    Article  Google Scholar 

  38. Nihei N, Okamoto H, Furune T, Ikuta N, Sasaki K, Rimbach G, Yoshikawa Y, Terao K (2018) Dietary α-cyclodextrin modifies gut microbiota and reduces fat accumulation in high-fat-diet-fed obese mice. BioFactors 44(4):336–347. https://doi.org/10.1002/biof.1429

    Article  CAS  Google Scholar 

  39. Mistry R, Gu F, Schols H, Verkade H, Tietge U (2018) Effect of the prebiotic fiber inulin on cholesterol metabolism in wildtype mice. Sci Rep 8:1–8. https://doi.org/10.1038/s41598-018-31698-7

    Article  CAS  Google Scholar 

  40. Du H, Zhao A, Wang Q, Yang X, Ren D (2020) Supplementation of inulin with various degree of polymerization ameliorates liver injury and gut microbiota dysbiosis in high fat-fed obese mice. J Agric Food Chem 68(3):779–787. https://doi.org/10.1021/acs.jafc.9b06571

    Article  CAS  PubMed  Google Scholar 

  41. Ke X, Walker A, Haange SB, Lagkouvardos I, Liu Y, Schmitt-Kopplin P, von Bergen M, Jehmlich N, He X, Clavel T, Cheung PCK (2019) Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice. Mol Metab 22:96–109. https://doi.org/10.1016/j.molmet.2019.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bubnov R, Babenko L, Lazarenko L, Mokrozub V, Demchenko O, Nechypurenko O et al (2017) Comparative study of probiotic effects of Lactobacillus and Bifidobacteria strains on cholesterol levels, liver morphology and the gut microbiota in obese mice. EPMA J 8(4):357–376p. https://doi.org/10.1007/s13167-017-0117-3

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fruchart JC, Duriez P (2006) Mode of action of fibrates in the regulation of triglyceride and HDL-cholesterol metabolism. Drugs Today (Barc) 42(1):39–64. https://doi.org/10.1358/dot.2006.42.1.963528. PMID: 16511610

    Article  CAS  PubMed  Google Scholar 

  44. Wang J, Zhang H, Chen X, Chen Y, Menghebilige BQ (2012) Selection of potential probiotic lactobacilli for cholesterol-lowering properties and their effect on cholesterol metabolism in rats fed a high-lipid diet. J Dairy Sci 95(4):1645–1654. https://doi.org/10.3168/jds.2011-4768

    Article  CAS  PubMed  Google Scholar 

  45. Kersten S (2014) Integrated physiology and systems biology of PPARα. Mol Metab 3(4):354–371. https://doi.org/10.1016/j.molmet.2014.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu Y, Zhang Q, Ren Y, Ruan Z (2017) Effect of probiotic Lactobacillus on lipid profile: a systematic review and meta-analysis of randomized, controlled trials. PLoS ONE 12(6):e0178868. https://doi.org/10.1371/journal.pone.0178868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ali K, Abo-Ali EM, Kabir MD, Riggins B, Nguy S, Li L, Srivastava U, Thinn SM (2014) A Western-fed diet increases plasma HDL and LDL-cholesterol levels in apoD-/- mice. PLoS ONE 9(12):e115744. https://doi.org/10.1371/journal.pone.0115744

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zizzo G, Cohen PL (2015) The PPAR-γ antagonist GW9662 elicits differentiation of M2c-like cells and upregulation of the MerTK/Gas6 axis: a key role for PPAR-γ in human macrophage polarization. J Inflamm (Lond) 12:36. https://doi.org/10.1186/s12950-015-0081-4

    Article  CAS  PubMed  Google Scholar 

  49. Kim K, Jeong J, Kim D (2015) Lactobacillus brevis OK56 ameliorates high- fat diet-induced obesity in mice by inhibiting NF-kB activation and gut microbial LPS production. J Funct Foods 13:183–191. https://doi.org/10.1016/j.jff.2014.12.045

    Article  CAS  Google Scholar 

  50. Mencarelli A, Distruitti E, Renga B, D’Amore C, Cipriani S, Palladino G, Donini A, Ricci P, Fiorucci S (2011) Probiotics modulate intestinal expression of nuclear receptor and provide counter-regulatory signals to inflammation-driven adipose tissue activation. Plos ONE. 6(7). https://doi.org/10.1371/journal.pone.0022978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dewulf E, Cani P, Neyrinck A, Possemiers S, Van Holle A, Muccioli G, Deldicque L, Bindels L, Pachikian B, Sohet F, Mignolet E, Francaux M, Larondelle Y, Delzenne N (2011) Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARγ-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J Nutrl Biochem 22(8):712–722p

    Article  CAS  Google Scholar 

  52. An M, Park YH, Lim YH (2021) Antiobesity and antidiabetic effects of the dairy bacterium Propionibacterium freudenreichii MJ2 in high-fat diet-induced obese mice by modulating lipid metabolism. Sci Rep 11:2481. https://doi.org/10.1038/s41598-021-82282-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shiomi Y, Yamauchi T, Iwabu M, Okada-Iwabu M, Nakayama R, Orikawa Y, Yoshioka Y, Tanaka K, Ueki K, Kadowaki T (2015) A novel peroxisome proliferator-activated receptor (PPAR)α agonist and PPARγ antagonist, Z-551, ameliorates high-fat diet-induced obesity and metabolic disorders in mice. J Biol Chem 290(23):14567–14581. https://doi.org/10.1074/jbc.M114.622191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ll P, Siersbæk M, Mandrup S (2012) PPARs: fatty acid sensors controlling metabolism. Semin Cell Dev Biol 23(6):631–639. https://doi.org/10.1016/j.semcdb.2012.01.003

    Article  CAS  Google Scholar 

  55. Becker J, Delayre-Orthez C, Frossard N, Pons F (2008) Regulation of peroxisome proliferator-activated receptor-alpha expression during lung inflammation. Pulm Pharmacol Ther 21(2):324–330. https://doi.org/10.1016/j.pupt.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  56. Mei L, Tang Y, Li M, Yang P, Liu Z, Yuan J, Zheng P (2015) Co-administration of cholesterol-lowering probiotics and anthraquinone from Cassia obtusifolia L. ameliorate non-alcoholic fatty liver. PLoS One 10(9):e0138078. https://doi.org/10.1371/journal.pone.0138078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Alves CC, Waitzberg DL, de Andrade LS et al (2017) Prebiotic and synbiotic modifications of beta oxidation and lipogenic gene expression after experimental hypercholesterolemia in rat liver. Front Microbiol 8:2010. https://doi.org/10.3389/fmicb.2017.02010

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA (2009) Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol 9(4):447–453. https://doi.org/10.1016/j.coph.2009.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Longenecker JZ, Petrosino JM, Martens CR, Hinger SA, Royer CJ, Dorn LE, Branch DA, Serrano J, Stanford KI, Kyriazis GA, Baskin KK, Accornero F (2021) Cardiac-derived TGF-β1 confers resistance to diet-induced obesity through the regulation of adipocyte size and function. Mol Metab 54:101343. https://doi.org/10.1016/j.molmet.2021.101343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All the authors are grateful to Universidad Autónoma de Ciudad Juárez for the support and infrastructure.To CONACYT for the scholarship granted to Rangel-Torres BE for his master's degree studies. To Dr. José Alberto López Díaz for his help to handle the study animals. To Dra. Ana Lidia Arellano Ortiz and Dra. Raquel González Férnandez for their helpful advices.

Author information

Authors and Affiliations

Authors

Contributions

Investigation, writing original draft: Rangel-Torres Brian Eduardo; writing–review and editing: García-Montoya Isui Abril; formal analysis: Rodríguez-Tadeo Alejandra; conceptualization, methodology, and resources: Jiménez-Vega Florinda.

Corresponding author

Correspondence to Florinda Jiménez-Vega.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangel-Torres, B.E., García-Montoya, I.A., Rodríguez-Tadeo, A. et al. The Symbiosis Between Lactobacillus acidophilus and Inulin: Metabolic Benefits in an Obese Murine Model. Probiotics & Antimicro. Prot. 16, 26–34 (2024). https://doi.org/10.1007/s12602-022-10012-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-10012-y

Keywords

Navigation