Skip to main content

Advertisement

Log in

Lactiplantibacillus plantarum Strain FLPL05 Promotes Longevity in Mice by Improving Intestinal Barrier

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the effect of oral administration of probiotic Lactiplantibacillus plantarum FLPL05 on the lifespan and intestinal barrier of aged mice. L. plantarum FLPL05 significantly prolonged the lifespan of naturally aged mice, maintained the integrity of intestinal mucosal barrier, and reduced the inflammation level. The analysis of intestinal microbiota revealed that L. plantarum FLPL05 increased the relative abundance of Firmicutes and decreased the abundance of Bacteroides, accompanied by the increased proportions of Lactobacillus and Desulfovibrio in intestinal microbiota as well as the reduced proportions of Roseburia and Parabacteroides. The intestinal proteomics revealed that the oral administration of L. plantarum FLPL05 significantly upregulated the tight junction and simultaneously inhibited the expression of apoptotic-related proteins. The immunohistochemistry results also indicated that L. plantarum FLPL05 promoted the expression of tight junction proteins (ZO-1 and occludin) and reduced the apoptosis of intestinal cells. In addition, L. plantarum FLPL05 and the fermented supernatant increased the activity of HT-29. L. plantarum FLPL05 prolonged the lifespan by improving the health of the intestinal tract after aging and may be a potential probiotic and nutritional supplement for the elderly people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

Data are available on reasonable request to the authors.

References

  1. Blikslager AT, Moeser AJ, Gookin JL, Jones SL, Odle J (2007) Restoration of barrier function in injured intestinal mucosa. Physiol Rev 87:545–564. https://doi.org/10.1152/physrev.00012.2006

    Article  CAS  PubMed  Google Scholar 

  2. Fasano A (2011) Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 91:151–175. https://doi.org/10.1152/physrev.00003.2008

    Article  CAS  PubMed  Google Scholar 

  3. Swidsinski A, Loening-Baucke V, Theissig F et al (2007) Comparative study of the intestinal mucus barrier in normal and inflamed colon. Gut 56:343–350. https://doi.org/10.1136/gut.2006.098160

    Article  PubMed  Google Scholar 

  4. Everard A, Belzer C, Geurts L et al (2013) (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110:9066–9071. https://doi.org/10.1073/pnas.1219451110

    Article  PubMed  PubMed Central  Google Scholar 

  5. Neurath MF (2020) Host–microbiota interactions in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 17:76–77. https://doi.org/10.1038/s41575-019-0248-1

    Article  PubMed  Google Scholar 

  6. Chen Z, Radjabzadeh D, Chen L et al (2021) Association of insulin resistance and type 2 diabetes with gut microbial diversity: a microbiome-wide analysis from population studies. JAMA Netw Open 4:e2118811. https://doi.org/10.1001/jamanetworkopen.2021.18811

    Article  PubMed  PubMed Central  Google Scholar 

  7. Knauf F, Brewer JR, Flavell RA (2019) Immunity, microbiota and kidney disease. Nat Rev Nephrol 15:263–274. https://doi.org/10.1038/s41581-019-0118-7

    Article  PubMed  Google Scholar 

  8. Thevaranjan N, Puchta A, Schulz C et al (2017) Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21(455–466):e4. https://doi.org/10.1016/j.chom.2017.03.002

    Article  CAS  Google Scholar 

  9. Rera M, Clark RI, Walker DW (2012) Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc Natl Acad Sci U S A 109:21528–21533. https://doi.org/10.1073/pnas.1215849110

    Article  PubMed  PubMed Central  Google Scholar 

  10. An R, Wilms E, Masclee AAM, Smidt H, Zoetendal EG, Jonkers D (2018) Age-dependent changes in GI physiology and microbiota: time to reconsider? Gut 67:2213–2222. https://doi.org/10.1136/gutjnl-2017-315542

    Article  CAS  PubMed  Google Scholar 

  11. Li M, Xiao ZQ, Chen ZC et al (2007) Proteomic analysis of the aging-related proteins in human normal colon epithelial tissue. J Biochem Mol Biol 40:72–81. https://doi.org/10.5483/bmbrep.2007.40.1.072

    Article  CAS  PubMed  Google Scholar 

  12. Lopes GS, Mora OA, Cerri P et al (2004) Mitochondrial alterations and apoptosis in smooth muscle from aged rats. Biochim Biophys Acta 1658:187–194. https://doi.org/10.1016/j.bbabio.2004.05.011

    Article  CAS  PubMed  Google Scholar 

  13. Ono T, Ikehata H, Pithani VP et al (2004) Spontaneous mutations in digestive tract of old mice show tissue-specific patterns of genomic instability. Cancer Res 64:6919–6923. https://doi.org/10.1158/0008-5472.CAN-04-1476

    Article  CAS  PubMed  Google Scholar 

  14. Tran L, Greenwood-Van MB (2013) Age-associated remodeling of the intestinal epithelial barrier. J Gerontol A Biol Sci Med Sci 68:1045–1056. https://doi.org/10.1093/gerona/glt106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fujimoto K, Iwakiri R, Wu B, Fujise T, Tsunada S, Ootani A (2002) Homeostasis in the small intestinal mucosa balanced between cell proliferation and apoptosis is regulated partly by the central nervous system. J Gastroenterol 37(Suppl 14):139–144. https://doi.org/10.1007/BF03326433

    Article  CAS  PubMed  Google Scholar 

  16. Brubaker PL, Drucker DJ (2004) Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 145:2653–2659. https://doi.org/10.1210/en.2004-0015

    Article  CAS  PubMed  Google Scholar 

  17. Priya A, Kaur K, Bhattacharyya S, Chakraborti A, Ghosh S (2017) Cell cycle arrest and apoptosis induced by enteroaggregative Escherichia coli in cultured human intestinal epithelial cells. J Med Microbiol 66:217–225. https://doi.org/10.1099/jmm.0.000405

    Article  PubMed  Google Scholar 

  18. Pusztaszeri MP, Genta RM, Cryer BL (2007) Drug-induced injury in the gastrointestinal tract: clinical and pathologic considerations. Nat Clin Pract Gastroenterol Hepatol 4:442–453. https://doi.org/10.1038/ncpgasthep0896

    Article  CAS  PubMed  Google Scholar 

  19. Fazeny-Dörner B, Veitl M, Wenzel C et al (2002) Alterations in intestinal permeability following the intensified polydrug-chemotherapy IFADIC (ifosfamide, Adriamycin, dacarbazine). Cancer Chemother Pharmacol 49:294–298. https://doi.org/10.1007/s00280-001-0414-2

    Article  CAS  PubMed  Google Scholar 

  20. Hill C, Guarner F, Reid G et al (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  21. Zhao K, Xie Q, Xu D et al (2018) Antagonistics of Lactobacillus plantarum ZDY2013 against Helicobacter pylori SS1 and its infection in vitro in human gastric epithelial AGS cells. J Biosci Bioeng 126:458–463. https://doi.org/10.1016/j.jbiosc.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  22. Bernbom N, Licht TR, Saadbye P, Vogensen FK, Nørrung B (2006) Lactobacillus plantarum inhibits growth of Listeria monocytogenes in an in vitro continuous flow gut model, but promotes invasion of L. monocytogenes in the gut of gnotobiotic rats. Int J Food Microbiol 108:10–14. https://doi.org/10.1016/j.ijfoodmicro.2005.10.021

    Article  CAS  PubMed  Google Scholar 

  23. Mangell P, Nejdfors P, Wang M et al (2002) Lactobacillus plantarum 299v inhibits Escherichia coli-induced intestinal permeability. Dig Dis Sci 47(3):511–516. https://doi.org/10.1023/a:1017947531536

    Article  PubMed  Google Scholar 

  24. van Beek AA, Sovran B, Hugenholtz F et al (2016) Supplementation with Lactobacillus plantarum WCFS1 prevents decline of mucus barrier in colon of accelerated aging Ercc1 -/Δ7 mice. Front Immunol 7:408. https://doi.org/10.3389/fimmu.2016.00408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu X, Li Y, Wu Q, Shah NP, Wei H, Xu F (2020) Genomic analysis for antioxidant property of Lactobacillus plantarum FLPL05 from Chinese longevity people. Probiotics Antimicrob Proteins 12:1451–1458. https://doi.org/10.1007/s12602-020-09704-0

    Article  CAS  PubMed  Google Scholar 

  26. Hu M, Wu X, Luo M, Wei H, Xu D, Xu F (2020) Lactobacillus rhamnosus FLRH93 protects against intestinal damage in mice induced by 5-fluorouracil. J Dairy Sci 103:5003–5018. https://doi.org/10.3168/jds.2019-17836

    Article  CAS  PubMed  Google Scholar 

  27. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  29. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth0510-335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  31. Ren Y, He Y, Lin Z et al (2018) Reagents for isobaric labeling peptides in quantitative proteomics. Anal Chem 90:12366–12371. https://doi.org/10.1021/acs.analchem.8b00321

    Article  CAS  PubMed  Google Scholar 

  32. Wen B, Zhou R, Feng Q, Wang Q, Wang J, Liu S (2014) IQuant: an automated pipeline for quantitative proteomics based upon isobaric tags. Proteomics 14:2280–2285. https://doi.org/10.1002/pmic.201300361

    Article  CAS  PubMed  Google Scholar 

  33. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  34. König J, Wells J, Cani PD et al (2016) Human intestinal barrier function in health and disease. Clin Transl Gastroenterol 7:e196. https://doi.org/10.1038/ctg.2016.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu T, Wu Y, Wang L, Pang X, Zhao L, Yuan H, Zhang CA (2019) A more robust gut microbiota in calorie-restricted mice is associated with attenuated intestinal injury caused by the chemotherapy drug cyclophosphamide. mBio 10:e02903–18. https://doi.org/10.1128/mBio.02903-18

  36. Pan F, Zhang L, Li M, Hu Y, Zeng B, Yuan H, Zhao L, Zhang C (2018) Predominant gut Lactobacillus murinus strain mediates anti-inflammaging effects in calorie-restricted mice. Microbiome 6:54. https://doi.org/10.1186/s40168-018-0440-5

    Article  PubMed  PubMed Central  Google Scholar 

  37. Anderson RC, Cookson AL, McNabb WC, Kelly WJ, Roy NC (2010) Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiol Lett 309:184–192. https://doi.org/10.1111/j.1574-6968.2010.02038

    Article  CAS  PubMed  Google Scholar 

  38. Anderson RC, Cookson AL, McNabb WC, Park Z, McCann MJ, Kelly WJ, Roy NC (2010) Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol 10:316. https://doi.org/10.1186/1471-2180-10-316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheng S, Yao J; Chinese Geriatric Society, Editorial Board of Chinese Journal of Geriatrics (2018) Expert consensus on the assessment and treatment of chronic constipation in the elderly. Aging Med (Milton) 1:8–17. https://doi.org/10.1002/agm2.12013

    Article  Google Scholar 

  40. de Moraes JG, Motta ME, Beltrão MF, Salviano TL, da Silva GA (2016) Fecal microbiota and diet of children with chronic constipation. Int J Pediatr 2016:6787269. https://doi.org/10.1155/2016/6787269

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang C, Li S, Yang L, Huang P, Li W, Wang S, Zhao G, Zhang M, Pang X, Yan Z, Liu Y, Zhao L (2013) Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun 4:2163. https://doi.org/10.1038/ncomms3163

    Article  CAS  PubMed  Google Scholar 

  42. Schirmer M, Garner A, Vlamakis H, Xavier RJ (2019) Microbial genes and pathways in inflammatory bowel disease. Nat Rev Microbiol 17:497–511. https://doi.org/10.1038/s41579-019-0213-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I (2015) Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7:2839–2849. https://doi.org/10.3390/nu7042839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340. https://doi.org/10.1194/jlr.R036012

    Article  CAS  Google Scholar 

  45. Daroqui MC, Augenlicht LH (2010) Transcriptional attenuation in colon carcinoma cells in response to butyrate. Cancer Prev Res (Phila) 3:1292–1302. https://doi.org/10.1158/1940-6207

    Article  CAS  PubMed  Google Scholar 

  46. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L (2014) The role of short-chain fatty acids in health and disease. Adv Immunol 121:91–119. https://doi.org/10.1016/B978-0-12-800100-4.00003-9

    Article  CAS  PubMed  Google Scholar 

  47. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573. https://doi.org/10.1126/science.1241165

    Article  CAS  PubMed  Google Scholar 

  48. Yan F, Polk DB (2002) Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem 277:50959–50965. https://doi.org/10.1074/jbc.M207050200

    Article  CAS  PubMed  Google Scholar 

  49. Brosch M, Yu L, Hubbard T, Choudhary J (2009) Accurate and Sensitive Peptide Identification with Mascot Percolator. Journal of Proteome Research 8(6) 3176-3181 10.1021/pr800982s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (NSF31260363, 31000048, 31260263).

Author information

Authors and Affiliations

Authors

Contributions

XY and MW performed and designed experiments, XW analyzed data, XY and FX wrote the manuscript performed experiments, and HW and XY edited the manuscript and provided advice. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hua Wei or Feng Xu.

Ethics declarations

Ethics Approval

All applicable institutional guidelines for the care and use of animals were followed.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Wei, M., Yang, D. et al. Lactiplantibacillus plantarum Strain FLPL05 Promotes Longevity in Mice by Improving Intestinal Barrier. Probiotics & Antimicro. Prot. 15, 1193–1205 (2023). https://doi.org/10.1007/s12602-022-09933-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-09933-5

Keywords

Navigation