Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533–e1002533. https://doi.org/10.1371/journal.pbio.1002533
CAS
Article
PubMed
PubMed Central
Google Scholar
Schluter J, Peled JU, Taylor BP, Markey KA, Smith M, Taur Y, Niehus R, Staffas A, Dai A, Fontana E, Amoretti LA, Wright RJ, Morjaria S, Fenelus M, Pessin MS, Chao NJ, Lew M, Bohannon L, Bush A, Sung AD, Hohl TM, Perales M-A, van den Brink MRM, Xavier JB (2020) The gut microbiota is associated with immune cell dynamics in humans. Nature 588:303–307. https://doi.org/10.1038/s41586-020-2971-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Goodrich JK, Davenport ER, Waters JL, Clark AG, Ley RE (2016) Cross-species comparisons of host genetic associations with the microbiome. Science 352:532–535. https://doi.org/10.1126/science.aad9379
CAS
Article
PubMed
PubMed Central
Google Scholar
Kaoutari AE, Armougom F, Gordon JI, Raoult D, Henrissat B (2013) The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 11:497–504. https://doi.org/10.1038/nrmicro3050
CAS
Article
PubMed
Google Scholar
Smith PA (2015) The tantalizing links between gut microbes and the brain. Nature 526:312–314. https://doi.org/10.1038/526312a
CAS
Article
PubMed
Google Scholar
Sobhani I, Bergsten E, Couffin S, Amiot A, Nebbad B, Barau C, de’AngelisRabot NS, Canoui-Poitrine F, Mestivier D, Pédron T, Khazaie K, Sansonetti PJ (2019) Colorectal cancer-associated microbiota contributes to oncogenic epigenetic signatures. Proc Natl Acad Sci USA 116:24285–24295. https://doi.org/10.1073/pnas.1912129116
CAS
Article
PubMed
PubMed Central
Google Scholar
Li Q, Chang Y, Zhang K, Chen H, Tao S, Zhang Z (2020) Implication of the gut microbiome composition of type 2 diabetic patients from northern China. Sci Rep 10:5450. https://doi.org/10.1038/s41598-020-62224-3
Article
PubMed
PubMed Central
Google Scholar
Yeoh YK, Zuo T, Lui GC-Y, Zhang F, Liu Q, Li AY, Chung AC, Cheung CP, Tso EY, Fung KS, Chan V, Ling L, Joynt G, Hui DS-C, Chow KM, Ng SSS, Li TC-M, Ng RW, Yip TC, Wong GL-H, Chan FK, Wong CK, Chan PK, Ng SC (2021) Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 70:698–706. https://doi.org/10.1136/gutjnl-2020-323020
CAS
Article
PubMed
Google Scholar
Ferreiro A, Crook N, Gasparrini AJ, Dantas G (2018) Multiscale evolutionary dynamics of host-associated microbiomes. Cell 172:1216–1227. https://doi.org/10.1016/j.cell.2018.02.015
CAS
Article
PubMed
PubMed Central
Google Scholar
Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107:11971–11975. https://doi.org/10.1073/pnas.1002601107
Article
PubMed
PubMed Central
Google Scholar
O’Toole PW, Claesson MJ (2010) Gut microbiota: changes throughout the lifespan from infancy to elderly. Int Dairy J 20:281–291. https://doi.org/10.1016/j.idairyj.2009.11.010
CAS
Article
Google Scholar
Das B, Ghosh TS, Kedia S, Rampal R, Saxena S, Bag S, Mitra R, Dayal M, Mehta O, Surendranath A, Travis SPL, Tripathi P, Nair GB, Ahuja V (2018) Analysis of the gut microbiome of rural and urban healthy indians living in sea level and high altitude areas. Sci Rep 8:10104. https://doi.org/10.1038/s41598-018-28550-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Priya S, Blekhman R (2019) Population dynamics of the human gut microbiome: change is the only constant. Genome Biol 20:150. https://doi.org/10.1186/s13059-019-1775-3
Article
PubMed
PubMed Central
Google Scholar
Medawar PB (1952) An unsolved problem of biology. Published for the college by H. K, Lewis, London
Google Scholar
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
CAS
Article
PubMed
PubMed Central
Google Scholar
Gems D, Partridge L (2013) Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 75:621–644. https://doi.org/10.1146/annurev-physiol-030212-183712
CAS
Article
PubMed
Google Scholar
Report HoL (2021) Ageing: Science, Technology and Healthy Living. UK. https://publications.parliament.uk/pa/ld5801/ldselect/ldsctech/183/183.pdf. Accessed 25 Dec 2021
Borghesan M, Hoogaars WMH, Varela-Eirin M, Talma N, Demaria M (2020) A senescence-centric view of aging: implications for longevity and disease. Trends Cell Biol 30:777–791. https://doi.org/10.1016/j.tcb.2020.07.002
CAS
Article
PubMed
Google Scholar
Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM, Bardeesy N, Castrillon DH, Beach DH, Sharpless NE (2013) Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 152:340–351. https://doi.org/10.1016/j.cell.2012.12.010
CAS
Article
PubMed
PubMed Central
Google Scholar
Tuttle CSL, Luesken SWM, Waaijer MEC, Maier AB (2021) Senescence in tissue samples of humans with age-related diseases: a systematic review. Ageing Res Rev 68:101334. https://doi.org/10.1016/j.arr.2021.101334
CAS
Article
PubMed
Google Scholar
Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311:1257. https://doi.org/10.1126/science.1122446
CAS
Article
PubMed
Google Scholar
Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, Khazaie K, Miller JD, van Deursen JM (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189. https://doi.org/10.1038/nature16932
CAS
Article
PubMed
PubMed Central
Google Scholar
Gasek NS, Kuchel GA, Kirkland JL, Xu M (2021) Strategies for targeting senescent cells in human disease. Nat Aging 1:870–879. https://doi.org/10.1038/s43587-021-00121-8
Article
PubMed
PubMed Central
Google Scholar
Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236. https://doi.org/10.1038/nature10600
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M, O’Hara SP, LaRusso NF, Miller JD, Roos CM, Verzosa GC, LeBrasseur NK, Wren JD, Farr JN, Khosla S, Stout MB, McGowan SJ, Fuhrmann-Stroissnigg H, Gurkar AU, Zhao J, Colangelo D, Dorronsoro A, Ling YY, Barghouthy AS, Navarro DC, Sano T, Robbins PD, Niedernhofer LJ, Kirkland JL (2015) The achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:644–658. https://doi.org/10.1111/acel.12344
CAS
Article
PubMed
PubMed Central
Google Scholar
Salekeen R, Barua J, Shaha PR, Islam KMD, Islam ME, Billah MM, Rahman SMM (2021) Marine phycocompound screening reveals a potential source of novel senotherapeutics. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2021.1877822
Article
PubMed
Google Scholar
Kirkland JL, Tchkonia T (2020) Senolytic drugs: from discovery to translation. J Intern Med 288:518–536. https://doi.org/10.1111/joim.13141
CAS
Article
PubMed
Google Scholar
Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL, Kellogg TA, Khosla S, Koerber DM, Lagnado AB, Lawson DK, LeBrasseur NK, Lerman LO, McDonald KM, McKenzie TJ, Passos JF, Pignolo RJ, Pirtskhalava T, Saadiq IM, Schaefer KK, Textor SC, Victorelli SG, Volkman TL, Xue A, Wentworth MA, Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL (2019) Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47:446–456. https://doi.org/10.1016/j.ebiom.2019.08.069
Article
PubMed
PubMed Central
Google Scholar
Dolgin E (2020) Send in the senolytics. Nat Biotechnol 38:1371–1377. https://doi.org/10.1038/s41587-020-00750-1
CAS
Article
PubMed
Google Scholar
Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, Prata L, Masternak MM, Kritchevsky SB, Musi N, Kirkland JL (2019) Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine 40:554–563. https://doi.org/10.1016/j.ebiom.2018.12.052
Article
PubMed
PubMed Central
Google Scholar
Kim M, Benayoun BA (2020) The microbiome: an emerging key player in aging and longevity. Transl Med Aging 4:103–116. https://doi.org/10.1016/j.tma.2020.07.004
Article
PubMed
PubMed Central
Google Scholar
Mariat D, Firmesse O, Levenez F, Guimarăes VD, Sokol H, Doré J, Corthier G, Furet JP (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123. https://doi.org/10.1186/1471-2180-9-123
CAS
Article
PubMed
PubMed Central
Google Scholar
Hopkins MJ, Macfarlane GT (2002) Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J Med Microbiol 51:448–454. https://doi.org/10.1099/0022-1317-51-5-448
CAS
Article
PubMed
Google Scholar
Kong F, Hua Y, Zeng B, Ning R, Li Y, Zhao J (2016) Gut microbiota signatures of longevity. Curr Biol 26:R832-r833. https://doi.org/10.1016/j.cub.2016.08.015
CAS
Article
PubMed
Google Scholar
Claesson MJ, Cusack S, Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, Connor M, Harnedy N, Connor K, Henry C, Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, Toole PW (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 108:4586. https://doi.org/10.1073/pnas.1000097107
Article
PubMed
Google Scholar
Ruiz-Ruiz S, Sanchez-Carrillo S, Ciordia S, Mena MC, Méndez-García C, Rojo D, Bargiela R, Zubeldia-Varela E, Martínez-Martínez M, Barbas C, Ferrer M, Moya A (2020) Functional microbiome deficits associated with ageing: chronological age threshold. Aging Cell 19:e13063. https://doi.org/10.1111/acel.13063
CAS
Article
PubMed
Google Scholar
Herranz N, Gil J (2018) Mechanisms and functions of cellular senescence. J Clin Investig 128:1238–1246. https://doi.org/10.1172/JCI95148
Article
PubMed
PubMed Central
Google Scholar
van Deursen JM (2014) The role of senescent cells in ageing. Nature 509:439–446. https://doi.org/10.1038/nature13193
CAS
Article
PubMed
PubMed Central
Google Scholar
Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307. https://doi.org/10.1172/jci22475
CAS
Article
PubMed
PubMed Central
Google Scholar
Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dollé ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31:722–733. https://doi.org/10.1016/j.devcel.2014.11.012
CAS
Article
PubMed
PubMed Central
Google Scholar
Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, Rodríguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, Serrano M (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118. https://doi.org/10.1016/j.cell.2013.10.019
CAS
Article
PubMed
Google Scholar
He S, Sharpless NE (2017) Senescence in health and disease. Cell 169:1000–1011. https://doi.org/10.1016/j.cell.2017.05.015
CAS
Article
PubMed
PubMed Central
Google Scholar
Sager R (1991) Senescence as a mode of tumor suppression. Environ Health Perspect 93:59–62. https://doi.org/10.1289/ehp.919359
CAS
Article
PubMed
PubMed Central
Google Scholar
Spallarossa P, Altieri P, Aloi C, Garibaldi S, Barisione C, Ghigliotti G, Fugazza G, Barsotti A, Brunelli C (2009) Doxorubicin induces senescence or apoptosis in rat neonatal cardiomyocytes by regulating the expression levels of the telomere binding factors 1 and 2. Am J Physiol Heart Circ Physiol 297:H2169-2181. https://doi.org/10.1152/ajpheart.00068.2009
CAS
Article
PubMed
Google Scholar
Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM (2014) Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep 15:1139–1153. https://doi.org/10.15252/embr.201439245
CAS
Article
PubMed
PubMed Central
Google Scholar
Song P, An J, Zou M-H (2020) Immune clearance of senescent cells to combat ageing and chronic diseases. Cells 9:671. https://doi.org/10.3390/cells9030671
CAS
Article
PubMed Central
Google Scholar
Idda ML, McClusky WG, Lodde V, Munk R, Abdelmohsen K, Rossi M, Gorospe M (2020) Survey of senescent cell markers with age in human tissues. Aging 12:4052–4066. https://doi.org/10.18632/aging.102903
CAS
Article
PubMed
PubMed Central
Google Scholar
Tuttle CSL, Waaijer MEC, Slee-Valentijn MS, Stijnen T, Westendorp R, Maier AB (2020) Cellular senescence and chronological age in various human tissues: A systematic review and meta-analysis. Aging Cell 19:e13083. https://doi.org/10.1111/acel.13083
CAS
Article
PubMed
Google Scholar
Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C, von Zglinicki T (2012) A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11:345–349. https://doi.org/10.1111/j.1474-9726.2012.00795.x
CAS
Article
PubMed
Google Scholar
Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522. https://doi.org/10.1016/j.cell.2005.02.003
CAS
Article
PubMed
Google Scholar
Xu M, Bradley EW, Weivoda MM, Hwang SM, Pirtskhalava T, Decklever T, Curran GL, Ogrodnik M, Jurk D, Johnson KO, Lowe V, Tchkonia T, Westendorf JJ, Kirkland JL (2017) Transplanted senescent cells induce an osteoarthritis-like condition in mice. J Gerontol A Biol Sci Med Sci 72:780–785. https://doi.org/10.1093/gerona/glw154
CAS
Article
PubMed
Google Scholar
Kim SR, Jiang K, Ferguson CM, Tang H, Chen X, Zhu X, Hickson LJ, Tchkonia T, Kirkland JL, Lerman LO (2020) Transplanted senescent renal scattered tubular-like cells induce injury in the mouse kidney. Am J Physiol Renal Physiol 318:F1167–F1176. https://doi.org/10.1152/ajprenal.00535.2019
CAS
Article
PubMed
PubMed Central
Google Scholar
Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, Inman CL, Ogrodnik MB, Hachfeld CM, Fraser DG, Onken JL, Johnson KO, Verzosa GC, Langhi LGP, Weigl M, Giorgadze N, LeBrasseur NK, Miller JD, Jurk D, Singh RJ, Allison DB, Ejima K, Hubbard GB, Ikeno Y, Cubro H, Garovic VD, Hou X, Weroha SJ, Robbins PD, Niedernhofer LJ, Khosla S, Tchkonia T, Kirkland JL (2018) Senolytics improve physical function and increase lifespan in old age. Nat Med 24:1246–1256. https://doi.org/10.1038/s41591-018-0092-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Cai Y, Zhou H, Zhu Y, Sun Q, Ji Y, Xue A, Wang Y, Chen W, Yu X, Wang L, Chen H, Li C, Luo T, Deng H (2020) Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res 30:574–589. https://doi.org/10.1038/s41422-020-0314-9
CAS
Article
PubMed
PubMed Central
Google Scholar
de Magalhães JP, Passos JF (2018) Stress, cell senescence and organismal ageing. Mech Ageing Dev 170:2–9. https://doi.org/10.1016/j.mad.2017.07.001
CAS
Article
PubMed
Google Scholar
Chen K, Shen W, Zhang Z, Xiong F, Ouyang Q, Luo C (2020) Age-dependent decline in stress response capacity revealed by proteins dynamics analysis. Sci Rep 10:15211. https://doi.org/10.1038/s41598-020-72167-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim KY, Sack MN, Kastner DL, Siegel RM (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208:519–533. https://doi.org/10.1084/jem.20102049
CAS
Article
PubMed
PubMed Central
Google Scholar
Campisi J (1997) The biology of replicative senescence. Eur J Cancer 33:703–709. https://doi.org/10.1016/s0959-8049(96)00058-5
CAS
Article
PubMed
Google Scholar
Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 101:17312–17315. https://doi.org/10.1073/pnas.0407162101
CAS
Article
PubMed
PubMed Central
Google Scholar
Tchirkov A, Lansdorp PM (2003) Role of oxidative stress in telomere shortening in cultured fibroblasts from normal individuals and patients with ataxia–telangiectasia. Hum Mol Genet 12:227–232. https://doi.org/10.1093/hmg/ddg023
CAS
Article
PubMed
Google Scholar
Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG, Thomas NE, Sharpless NE (2009) Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell 8:439–448. https://doi.org/10.1111/j.1474-9726.2009.00489.x
CAS
Article
PubMed
Google Scholar
Ovadya Y, Landsberger T, Leins H, Vadai E, Gal H, Biran A, Yosef R, Sagiv A, Agrawal A, Shapira A, Windheim J, Tsoory M, Schirmbeck R, Amit I, Geiger H, Krizhanovsky V (2018) Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat Commun 9:5435. https://doi.org/10.1038/s41467-018-07825-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Burton DGA, Stolzing A (2018) Cellular senescence: immunosurveillance and future immunotherapy. Ageing Res Rev 43:17–25. https://doi.org/10.1016/j.arr.2018.02.001
CAS
Article
PubMed
Google Scholar
Yousefzadeh MJ, Flores RR, Zhu Y, Schmiechen ZC, Brooks RW, Trussoni CE, Cui Y, Angelini L, Lee K-A, McGowan SJ, Burrack AL, Wang D, Dong Q, Lu A, Sano T, O’Kelly RD, McGuckian CA, Kato JI, Bank MP, Wade EA, Pillai SPS, Klug J, Ladiges WC, Burd CE, Lewis SE, LaRusso NF, Vo NV, Wang Y, Kelley EE, Huard J, Stromnes IM, Robbins PD, Niedernhofer LJ (2021) An aged immune system drives senescence and ageing of solid organs. Nature. https://doi.org/10.1038/s41586-021-03547-7
Article
PubMed
PubMed Central
Google Scholar
Sharma R (2021) Perspectives on the dynamic implications of cellular senescence and immunosenescence on macrophage aging biology. Biogerontology 22:571–587. https://doi.org/10.1007/s10522-021-09936-9
Article
PubMed
Google Scholar
Pereira BI, Devine OP, Vukmanovic-Stejic M, Chambers ES, Subramanian P, Patel N, Virasami A, Sebire NJ, Kinsler V, Valdovinos A, LeSaux CJ, Passos JF, Antoniou A, Rustin MHA, Campisi J, Akbar AN (2019) Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nat Commun 10:2387. https://doi.org/10.1038/s41467-019-10335-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Sharma R (2021) Bioactive food components for managing cellular senescence in aging and disease: a critical appraisal and perspectives. PharmaNutrition 18:100281. https://doi.org/10.1016/j.phanu.2021.100281
Article
Google Scholar
Zhang X, Yang Y, Su J, Zheng X, Wang C, Chen S, Liu J, Lv Y, Fan S, Zhao A, Chen T, Jia W, Wang X (2020) Age-related compositional changes and correlations of gut microbiome, serum metabolome, and immune factor in rats. GeroScience. https://doi.org/10.1007/s11357-020-00188-y
Article
PubMed
PubMed Central
Google Scholar
Bana B, Cabreiro F (2019) The microbiome and aging. Annual Rev Genet 53:239–261. https://doi.org/10.1146/annurev-genet-112618-043650
CAS
Article
Google Scholar
DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E (2016) Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis 22:1137–1150. https://doi.org/10.1097/MIB.0000000000000750
Article
PubMed
Google Scholar
Vaiserman A, Romanenko M, Piven L, Moseiko V, Lushchak O, Kryzhanovska N, Guryanov V, Koliada A (2020) Differences in the gut Firmicutes to Bacteroidetes ratio across age groups in healthy Ukrainian population. BMC Microbiol 20:221–221. https://doi.org/10.1186/s12866-020-01903-7
Article
PubMed
PubMed Central
Google Scholar
Salazar N, Valdés-Varela L, González S, Gueimonde M, de Los Reyes-Gavilán CG (2017) Nutrition and the gut microbiome in the elderly. Gut Microbes 8:82–97. https://doi.org/10.1080/19490976.2016.1256525
CAS
Article
PubMed
Google Scholar
Kamo T, Akazawa H, Suda W, Saga-Kamo A, Shimizu Y, Yagi H, Liu Q, Nomura S, Naito AT, Takeda N, Harada M, Toko H, Kumagai H, Ikeda Y, Takimoto E, Suzuki JI, Honda K, Morita H, Hattori M, Komuro I (2017) Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One 12:e0174099. https://doi.org/10.1371/journal.pone.0174099
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee HJ, Lee KE, Kim JK, Kim DH (2019) Suppression of gut dysbiosis by Bifidobacterium longum alleviates cognitive decline in 5XFAD transgenic and aged mice. Sci Rep 9:11814. https://doi.org/10.1038/s41598-019-48342-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Cardenas K, Dao V, Hurez V, Curiel T (2014) Age-related gut dysbiosis contributes to age-related colitis and colon cancer risk and appears B7-H1-dependent. (HUM8P.352). J Immunol 192(185):27
Google Scholar
Wilmanski T, Diener C, Rappaport N, Patwardhan S, Wiedrick J, Lapidus J, Earls JC, Zimmer A, Glusman G, Robinson M, Yurkovich JT, Kado DM, Cauley JA, Zmuda J, Lane NE, Magis AT, Lovejoy JC, Hood L, Gibbons SM, Orwoll ES, Price ND (2021) Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat Metab 3:274–286. https://doi.org/10.1038/s42255-021-00348-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Galkin F, Mamoshina P, Aliper A, Putin E, Moskalev V, Gladyshev VN, Zhavoronkov A (2020) Human gut microbiome aging clock based on taxonomic profiling and deep learning. iScience 23:101199. https://doi.org/10.1016/j.isci.2020.101199
Article
PubMed
PubMed Central
Google Scholar
Elliott ML, Caspi A, Houts RM, Ambler A, Broadbent JM, Hancox RJ, Harrington H, Hogan S, Keenan R, Knodt A, Leung JH, Melzer TR, Purdy SC, Ramrakha S, Richmond-Rakerd LS, Righarts A, Sugden K, Thomson WM, Thorne PR, Williams BS, Wilson G, Hariri AR, Poulton R, Moffitt TE (2021) Disparities in the pace of biological aging among midlife adults of the same chronological age have implications for future frailty risk and policy. Nat Aging 1:295–308. https://doi.org/10.1038/s43587-021-00044-4
Article
PubMed
PubMed Central
Google Scholar
Wu JW, Yaqub A, Ma Y, Koudstaal W, Hofman A, Ikram MA, Ghanbari M, Goudsmit J (2021) Biological age in healthy elderly predicts aging-related diseases including dementia. Sci Rep 11:15929. https://doi.org/10.1038/s41598-021-95425-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Maffei VJ, Kim S, Et B, Luo M, Jazwinski SM, Taylor CM, Welsh DA (2017) Biological aging and the human gut microbiota. J Gerontol A Biol Sci Med Sci 72:1474–1482. https://doi.org/10.1093/gerona/glx042
CAS
Article
PubMed
PubMed Central
Google Scholar
Ke S, Mitchell SJ, MacArthur MR, Kane AE, Sinclair DA, Venable EM, Chadaideh KS, Carmody RN, Grodstein F, Mitchell JR, Liu Y (2021) Gut microbiota predicts healthy late-life aging in male mice. Nutrients 13:3290
Article
Google Scholar
Iatsenko I, Boquete JP, Lemaitre B (2018) Microbiota-derived lactate activates production of reactive oxygen species by the intestinal nadph oxidase nox and shortens Drosophila lifespan. Immunity 49:929-942.e5. https://doi.org/10.1016/j.immuni.2018.09.017
CAS
Article
PubMed
Google Scholar
Smith P, Willemsen D, Popkes M, Metge F, Gandiwa E, Reichard M, Valenzano DR (2017) Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. Elife 6:e27014. https://doi.org/10.7554/eLife.27014
Article
PubMed
PubMed Central
Google Scholar
Fransen F, van Beek AA, Borghuis T, Aidy SE, Hugenholtz F, van der Gaast – de Jongh C, Savelkoul HFJ, De Jonge MI, Boekschoten MV, Smidt H, Faas MM, de Vos P (2017) Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Front Immunol 8:1385. https://doi.org/10.3389/fimmu.2017.01385
CAS
Article
PubMed
PubMed Central
Google Scholar
D’Amato A, Di Cesare ML, Lucarini E, Man AL, Le Gall G, Branca JJV, Ghelardini C, Amedei A, Bertelli E, Regoli M, Pacini A, Luciani G, Gallina P, Altera A, Narbad A, Gulisano M, Hoyles L, Vauzour D, Nicoletti C (2020) Faecal microbiota transplant from aged donor mice affects spatial learning and memory via modulating hippocampal synaptic plasticity- and neurotransmission-related proteins in young recipients. Microbiome 8:140. https://doi.org/10.1186/s40168-020-00914-w
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee J, Venna VR, Durgan DJ, Shi H, Hudobenko J, Putluri N, Petrosino J, McCullough LD, Bryan RM (2020) Young versus aged microbiota transplants to germ-free mice: increased short-chain fatty acids and improved cognitive performance. Gut Microbes 12:1–14. https://doi.org/10.1080/19490976.2020.1814107
CAS
Article
PubMed
Google Scholar
Li Y, Ning L, Yin Y, Wang R, Zhang Z, Hao L, Wang B, Zhao X, Yang X, Yin L, Wu S, Guo D, Zhang C (2020) Age-related shifts in gut microbiota contribute to cognitive decline in aged rats. Aging (Albany NY) 12:7801–7817. https://doi.org/10.18632/aging.103093
CAS
Article
Google Scholar
Jørgensen SMD, Rubak TMM, Damsgaard EM, Dahlerup JF, Hvas CL (2020) Faecal microbiota transplantation as a home therapy to frail older people. Age Ageing 49:1093–1096. https://doi.org/10.1093/ageing/afaa073
Article
PubMed
PubMed Central
Google Scholar
Kundu P, Lee HU, Garcia-Perez I, Tay EXY, Kim H, Faylon LE, Martin KA, Purbojati R, Drautz-Moses DI, Ghosh S, Nicholson JK, Schuster S, Holmes E, Pettersson S (2019) Neurogenesis and prolongevity signaling in young germ-free mice transplanted with the gut microbiota of old mice. Sci Transl Med 11:4760. https://doi.org/10.1126/scitranslmed.aau4760
CAS
Article
Google Scholar
Anand R, Song Y, Garg S, Girotra M, Sinha A, Sivaraman A, Phillips L, Dutta SK (2017) Effect of aging on the composition of fecal microbiota in donors for FMT and its impact on clinical outcomes. Dig Dis Sci 62:1002–1008. https://doi.org/10.1007/s10620-017-4449-6
CAS
Article
PubMed
Google Scholar
Elderman M, Sovran B, Hugenholtz F, Graversen K, Huijskes M, Houtsma E, Belzer C, Boekschoten M, de Vos P, Dekker J, Wells J, Faas M (2017) The effect of age on the intestinal mucus thickness, microbiota composition and immunity in relation to sex in mice. PLoS One 12:e0184274–e0184274. https://doi.org/10.1371/journal.pone.0184274
CAS
Article
PubMed
PubMed Central
Google Scholar
Tran L, Greenwood-Van Meerveld B (2013) Age-associated remodeling of the intestinal epithelial barrier. J Gerontol A Biol Sci Med Sci 68:1045–1056. https://doi.org/10.1093/gerona/glt106
CAS
Article
PubMed
PubMed Central
Google Scholar
Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi JC, Verschoor CP, Loukov D, Schenck LP, Jury J, Foley KP, Schertzer JD, Larché MJ, Davidson DJ, Verdú EF, Surette MG, Bowdish DME (2017) Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21:455-466.e4. https://doi.org/10.1016/j.chom.2017.03.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Choi J, Hur TY, Hong Y (2018) Influence of altered gut microbiota composition on aging and aging-related diseases. J Lifestyle Med 8:1–7. https://doi.org/10.15280/jlm.2018.8.1.1
Article
PubMed
PubMed Central
Google Scholar
Haran JP, McCormick BA (2021) Aging, frailty, and the microbiome-how dysbiosis influences human aging and disease. Gastroenterology 160:507–523. https://doi.org/10.1053/j.gastro.2020.09.060
CAS
Article
PubMed
Google Scholar
Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, Shulzhenko N (2020) Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 51:102590–102590. https://doi.org/10.1016/j.ebiom.2019.11.051
Article
PubMed
PubMed Central
Google Scholar
Doumatey AP, Adeyemo A, Zhou J, Lei L, Adebamowo SN, Adebamowo C, Rotimi CN (2020) Gut microbiome profiles are associated with type 2 diabetes in urban africans. Front Cell Infect Microbiol 10:63. https://doi.org/10.3389/fcimb.2020.00063
CAS
Article
PubMed
PubMed Central
Google Scholar
Das T, Jayasudha R, Chakravarthy S, Prashanthi GS, Bhargava A, Tyagi M, Rani PK, Pappuru RR, Sharma S, Shivaji S (2021) Alterations in the gut bacterial microbiome in people with type 2 diabetes mellitus and diabetic retinopathy. Sci Rep 11:2738. https://doi.org/10.1038/s41598-021-82538-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Almugadam BS, Liu Y, Chen SM, Wang CH, Shao CY, Ren BW, Tang L (2020) Alterations of gut microbiota in type 2 diabetes individuals and the confounding effect of antidiabetic agents. J Diabetes Res 2020:7253978. https://doi.org/10.1155/2020/7253978
CAS
Article
PubMed
PubMed Central
Google Scholar
Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S, Wandro S, Kosciolek T, Janssen S, Metcalf J, Song SJ, Kanbar J, Miller-Montgomery S, Heaton R, McKay R, Patel SP, Swafford AD, Knight R (2020) Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579:567–574. https://doi.org/10.1038/s41586-020-2095-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhuang H, Cheng L, Wang Y, Zhang YK, Zhao MF, Liang GD, Zhang MC, Li YG, Zhao JB, Gao YN, Zhou YJ, Liu SL (2019) Dysbiosis of the gut microbiome in lung cancer. Front Cell Infect Microbiol 9:112. https://doi.org/10.3389/fcimb.2019.00112
CAS
Article
PubMed
PubMed Central
Google Scholar
Nakatsu G, Li X, Zhou H, Sheng J, Wong SH, Wu WK, Ng SC, Tsoi H, Dong Y, Zhang N, He Y, Kang Q, Cao L, Wang K, Zhang J, Liang Q, Yu J, Sung JJ (2015) Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun 6:8727. https://doi.org/10.1038/ncomms9727
CAS
Article
PubMed
Google Scholar
Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, Costa JL, Carneiro F, Machado JC, Figueiredo C (2018) Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 67:226. https://doi.org/10.1136/gutjnl-2017-314205
CAS
Article
PubMed
Google Scholar
Half E, Keren N, Reshef L, Dorfman T, Lachter I, Kluger Y, Reshef N, Knobler H, Maor Y, Stein A, Konikoff FM, Gophna U (2019) Fecal microbiome signatures of pancreatic cancer patients. Sci Rep 9:16801. https://doi.org/10.1038/s41598-019-53041-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Daisley BA, Chanyi RM, Abdur-Rashid K, Al KF, Gibbons S, Chmiel JA, Wilcox H, Reid G, Anderson A, Dewar M, Nair SM, Chin J, Burton JP (2020) Abiraterone acetate preferentially enriches for the gut commensal Akkermansia muciniphila in castrate-resistant prostate cancer patients. Nat Commun 11:4822. https://doi.org/10.1038/s41467-020-18649-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Goedert JJ, Jones G, Hua X, Xu X, Yu G, Flores R, Falk RT, Gail MH, Shi J, Ravel J, Feigelson HS (2015) Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: a population-based case-control pilot study. J Natl Cancer Inst 107(8):djv147. https://doi.org/10.1093/jnci/djv147
CAS
Article
PubMed
PubMed Central
Google Scholar
D’Alessandro G, Antonangeli F, Marrocco F, Porzia A, Lauro C, Santoni A, Limatola C (2020) Gut microbiota alterations affect glioma growth and innate immune cells involved in tumor immunosurveillance in mice. Eur J Immunol 50:705–711. https://doi.org/10.1002/eji.201948354
CAS
Article
PubMed
PubMed Central
Google Scholar
Vicente-Dueñas C, Janssen S, Oldenburg M, Auer F, González-Herrero I, Casado-García A, Isidro-Hernández M, Raboso-Gallego J, Westhoff P, Pandyra AA, Hein D, Gössling KL, Alonso-López D, De Las RJ, Bhatia S, García-Criado FJ, García-Cenador MB, Weber APM, Köhrer K, Hauer J, Fischer U, Sánchez-García I, Borkhardt A (2020) An intact gut microbiome protects genetically predisposed mice against leukemia. Blood 136:2003–2017. https://doi.org/10.1182/blood.2019004381
Article
PubMed
PubMed Central
Google Scholar
Parida S, Sharma D (2021) The microbiome and cancer: creating friendly neighborhoods and removing the foes within. Cancer Res 81:790. https://doi.org/10.1158/0008-5472.CAN-20-2629
CAS
Article
PubMed
Google Scholar
Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, Zhong H, Liu Z, Gao Y, Zhao H, Zhang D, Su Z, Fang Z, Lan Z, Li J, Xiao L, Li J, Li R, Li X, Li F, Ren H, Huang Y, Peng Y, Li G, Wen B, Dong B, Chen JY, Geng QS, Zhang ZW, Yang H, Wang J, Wang J, Zhang X, Madsen L, Brix S, Ning G, Xu X, Liu X, Hou Y, Jia H, He K, Kristiansen K (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8:845. https://doi.org/10.1038/s41467-017-00900-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhu Q, Gao R, Zhang Y, Pan D, Zhu Y, Zhang X, Yang R, Jiang R, Xu Y, Qin H (2018) Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol Genomics 50:893–903. https://doi.org/10.1152/physiolgenomics.00070.2018
CAS
Article
PubMed
Google Scholar
Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Bäckhed F, Nielsen J (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3:1245. https://doi.org/10.1038/ncomms2266
CAS
Article
PubMed
Google Scholar
Luedde M, Winkler T, Heinsen FA, Rühlemann MC, Spehlmann ME, Bajrovic A, Lieb W, Franke A, Ott SJ, Frey N (2017) Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail 4:282–290. https://doi.org/10.1002/ehf2.12155
Article
PubMed
PubMed Central
Google Scholar
Cui X, Ye L, Li J, Jin L, Wang W, Li S, Bao M, Wu S, Li L, Geng B, Zhou X, Zhang J, Cai J (2018) Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep 8:635. https://doi.org/10.1038/s41598-017-18756-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Tang WHW, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM, Wu Y, Hazen SL (2014) Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 64:1908–1914. https://doi.org/10.1016/j.jacc.2014.02.617
CAS
Article
PubMed
Google Scholar
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63. https://doi.org/10.1038/nature09922
CAS
Article
PubMed
PubMed Central
Google Scholar
Holmes E, Li JV, Marchesi JR, Nicholson JK (2012) Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab 16:559–564. https://doi.org/10.1016/j.cmet.2012.10.007
CAS
Article
PubMed
Google Scholar
Conway J, Niharika AD (2021) Ageing of the gut microbiome: potential influences on immune senescence and inflammageing. Ageing Res Rev 68:101323. https://doi.org/10.1016/j.arr.2021.101323
CAS
Article
PubMed
Google Scholar
Buford TW (2017) (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome 5:80. https://doi.org/10.1186/s40168-017-0296-0
Article
PubMed
PubMed Central
Google Scholar
Aw D, Silva AB, Palmer DB (2007) Immunosenescence: emerging challenges for an ageing population. Immunology 120:435–446. https://doi.org/10.1111/j.1365-2567.2007.02555.x
CAS
Article
PubMed
PubMed Central
Google Scholar
De la Fuente M, Miquel J (2009) An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des 15:3003–3026. https://doi.org/10.2174/138161209789058110
Article
PubMed
Google Scholar
Song P, An J, Zou MH (2020) Immune clearance of senescent cells to combat ageing and chronic diseases. Cells 9(3):671. https://doi.org/10.3390/cells9030671
CAS
Article
PubMed Central
Google Scholar
Zhang D, Chen G, Manwani D, Mortha A, Xu C, Faith JJ, Burk RD, Kunisaki Y, Jang JE, Scheiermann C, Merad M, Frenette PS (2015) Neutrophil ageing is regulated by the microbiome. Nature 525:528–532. https://doi.org/10.1038/nature15367
CAS
Article
PubMed
PubMed Central
Google Scholar
Renson A, Mullan Harris K, Dowd JB, Gaydosh L, McQueen MB, Krauter KS, Shannahan M, Aiello AE (2020) Early signs of gut microbiome aging: biomarkers of inflammation, metabolism, and macromolecular damage in young adulthood. J Gerontol A Biol Sci Med Sci 75:1258–1266. https://doi.org/10.1093/gerona/glaa122
CAS
Article
PubMed
PubMed Central
Google Scholar
Shen X, Miao J, Wan Q, Wang S, Li M, Pu F, Wang G, Qian W, Yu Q, Marotta F, He F (2018) Possible correlation between gut microbiota and immunity among healthy middle-aged and elderly people in southwest China. Gut Pathog 10:4. https://doi.org/10.1186/s13099-018-0231-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Donaldson DS, Pollock J, Vohra P, Stevens MP, Mabbott NA (2020) Microbial stimulation reverses the age-related decline in M cells in aged mice. iScience 23:101147. https://doi.org/10.1016/j.isci.2020.101147
CAS
Article
PubMed
PubMed Central
Google Scholar
Guigoz Y, Rochat F, Perruisseau-Carrier G, Rochat I, Schiffrin EJ (2002) Effects of oligosaccharide on the faecal flora and non-specific immune system in elderly people. Nut Res 22:13–25. https://doi.org/10.1016/S0271-5317(01)00354-2
CAS
Article
Google Scholar
Sharma R, Kapila R, Dass G, Kapila S (2014) Improvement in Th1/Th2 immune homeostasis, antioxidative status and resistance to pathogenic E. coli on consumption of probiotic Lactobacillus rhamnosus fermented milk in aging mice. Age 36:9686. https://doi.org/10.1007/s11357-014-9686-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Oliphant K, Allen-Vercoe E (2019) Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 7:91. https://doi.org/10.1186/s40168-019-0704-8
Article
PubMed
PubMed Central
Google Scholar
Colldén H, Landin A, Wallenius V, Elebring E, Fändriks L, Nilsson ME, Ryberg H, Poutanen M, Sjögren K, Vandenput L, Ohlsson C (2019) The gut microbiota is a major regulator of androgen metabolism in intestinal contents. Am J Physiol Endocrinol Metab 317:E1182–E1192. https://doi.org/10.1152/ajpendo.00338.2019
CAS
Article
PubMed
PubMed Central
Google Scholar
Agus A, Clément K, Sokol H (2021) Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 70:1174. https://doi.org/10.1136/gutjnl-2020-323071
CAS
Article
PubMed
Google Scholar
Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG (2014) Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol (Baltimore, Md.) 28:1221–1238. https://doi.org/10.1210/me.2014-1108
CAS
Article
Google Scholar
Colavitti R, Finkel T (2005) Reactive oxygen species as mediators of cellular senescence. IUBMB Life 57:277–281. https://doi.org/10.1080/15216540500091890
CAS
Article
PubMed
Google Scholar
Zhang Y, Unnikrishnan A, Deepa SS, Liu Y, Li Y, Ikeno Y, Sosnowska D, Van Remmen H, Richardson A (2017) A new role for oxidative stress in aging: the accelerated aging phenotype in Sod1−/− mice is correlated to increased cellular senescence. Red Biol 11:30–37. https://doi.org/10.1016/j.redox.2016.10.014
CAS
Article
Google Scholar
Kumar R, Sharma A, Kumari A, Gulati A, Padwad Y, Sharma R (2019) Epigallocatechin gallate suppresses premature senescence of preadipocytes by inhibition of PI3K/Akt/mTOR pathway and induces senescent cell death by regulation of Bax/Bcl-2 pathway. Biogerontology 20:171–189. https://doi.org/10.1007/s10522-018-9785-1
CAS
Article
PubMed
Google Scholar
Varela-Eirín M, Carpintero-Fernández P, Sánchez-Temprano A, Varela-Vázquez A, Paíno CL, Casado-Díaz A, Continente AC, Mato V, Fonseca E, Kandouz M, Blanco A, Caeiro JR, Mayán MD (2020) Senolytic activity of small molecular polyphenols from olive restores chondrocyte redifferentiation and promotes a pro-regenerative environment in osteoarthritis. Aging 12:15882–15905. https://doi.org/10.18632/aging.103801
Article
PubMed
PubMed Central
Google Scholar
Chang PV, Hao L, Offermanns S, Medzhitov R (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA 111:2247. https://doi.org/10.1073/pnas.1322269111
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang LC, Pan TM, Tsai TY (2018) Lactic acid bacteria-fermented product of green tea and Houttuynia cordata leaves exerts anti-adipogenic and anti-obesity effects. J Food Drug Anal 26:973–984. https://doi.org/10.1016/j.jfda.2017.11.009
CAS
Article
PubMed
Google Scholar
Chung HJ, Lee H, Na G, Jung H, Kim DG, Shin SI, Jung SE, Choi ID, Lee JH, Sim JH, Choi HK (2020) Metabolic and lipidomic profiling of vegetable juices fermented with various probiotics. Biomolecules 10:725. https://doi.org/10.3390/biom10050725
CAS
Article
PubMed Central
Google Scholar
De Marco S, Sichetti M, Muradyan D, Piccioni M, Traina G, Pagiotti R, Pietrella D (2018) Probiotic cell-free supernatants exhibited anti-inflammatory and antioxidant activity on human gut epithelial cells and macrophages stimulated with lps. Evid Based Complement Alternat Med 2018:1756308. https://doi.org/10.1155/2018/1756308
Article
PubMed
PubMed Central
Google Scholar
Riaz Rajoka MS, Zhao H, Mehwish HM, Li N, Lu Y, Lian Z, Shao D, Jin M, Li Q, Zhao L, Shi J (2019) Anti-tumor potential of cell free culture supernatant of Lactobacillus rhamnosus strains isolated from human breast milk. Food Res Int 123:286–297. https://doi.org/10.1016/j.foodres.2019.05.002
CAS
Article
PubMed
Google Scholar
Rossi T, Vergara D, Fanini F, Maffia M, Bravaccini S, Pirini F (2020) Microbiota-derived metabolites in tumor progression and metastasis. Int J Mol Sci 21:5786. https://doi.org/10.3390/ijms21165786
CAS
Article
PubMed Central
Google Scholar
Parkar SG, Trower TM, Stevenson DE (2013) Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Anaerobe 23:12–19. https://doi.org/10.1016/j.anaerobe.2013.07.009
CAS
Article
PubMed
Google Scholar
Sharma R, Padwad Y (2020) Plant-polyphenols based second-generation synbiotics: emerging concepts, challenges, and opportunities. Nutrition 77:110785. https://doi.org/10.1016/j.nut.2020.110785
CAS
Article
PubMed
Google Scholar
Sharma R, Kumari M, Kumari A, Sharma A, Gulati A, Gupta M, Padwad Y (2019) Diet supplemented with phytochemical epigallocatechin gallate and probiotic Lactobacillus fermentum confers second generation synbiotic effects by modulating cellular immune responses and antioxidant capacity in aging mice. Eur J Nutr 58:2943–2957. https://doi.org/10.1007/s00394-018-01890-6
CAS
Article
PubMed
Google Scholar
Kumar R, Sharma A, Gupta M, Padwad Y, Sharma R (2020) Cell-free culture supernatant of probiotic Lactobacillus fermentum protects against h2o2-induced premature senescence by suppressing ros-akt-mtor axis in murine preadipocytes. Probiotics Antimicrob Proteins 12:563–576. https://doi.org/10.1007/s12602-019-09576-z
CAS
Article
PubMed
Google Scholar
Gervason S, Napoli M, Dreux-Zhiga A, Lazzarelli C, Garcier S, Briand A, Albouy M, Thepot A, Berthon JY, Filaire E (2019) Attenuation of negative effects of senescence in human skin using an extract from Sphingomonas hydrophobicum: development of new skin care solution. Int J Cosmet Sci 41:391–397. https://doi.org/10.1111/ics.12534
CAS
Article
PubMed
Google Scholar
Yousefzadeh MJ, Zhao J, Bukata C, Wade EA, McGowan SJ, Angelini LA, Bank MP, Gurkar AU, McGuckian CA, Calubag MF, Kato JI, Burd CE, Robbins PD, Niedernhofer LJ (2020) Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell 19:e13094. https://doi.org/10.1111/acel.13094
CAS
Article
PubMed
PubMed Central
Google Scholar
Sharma R, Kumar R, Sharma A, Goel A, Padwad Y (2021) Long term consumption of green tea EGCG enhances healthspan and lifespan in mice by mitigating multiple aspects of cellular senescence in mitotic and post-mitotic tissues, gut dysbiosis and immunosenescence. bioRxiv. https://doi.org/10.1101/2021.01.01.425058
Article
PubMed
PubMed Central
Google Scholar
Uchida R, Saito Y, Nogami K, Kajiyama Y, Suzuki Y, Kawase Y, Nakaoka T, Muramatsu T, Kimura M, Saito H (2018) Epigenetic silencing of Lgr5 induces senescence of intestinal epithelial organoids during the process of aging. npj Aging Mech Dis 4:12. https://doi.org/10.1038/s41514-018-0031-5
Article
PubMed Central
Google Scholar
Moorefield EC, Andres SF, Blue RE, Van Landeghem L, Mah AT, Santoro MA, Ding S (2017) Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells. Aging 9:1898–1915. https://doi.org/10.18632/aging.101279
CAS
Article
PubMed
PubMed Central
Google Scholar
Kumar S, Suman S, Fornace AJ, Datta K (2019) Intestinal stem cells acquire premature senescence and senescence associated secretory phenotype concurrent with persistent DNA damage after heavy ion radiation in mice. Aging 11:4145–4158. https://doi.org/10.18632/aging.102043
CAS
Article
PubMed
PubMed Central
Google Scholar
Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, Honda K, Ishikawa Y, Hara E, Ohtani N (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:97–101. https://doi.org/10.1038/nature12347
CAS
Article
PubMed
Google Scholar
Guo Y, Ayers JL, Carter KT, Wang T, Maden SK, Edmond D, Newcomb PP, Li C, Ulrich C, Yu M, Grady WM (2019) Senescence-associated tissue microenvironment promotes colon cancer formation through the secretory factor GDF15. Aging Cell 18:e13013. https://doi.org/10.1111/acel.13013
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, Cordon-Cardo C, Pandolfi PP (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730. https://doi.org/10.1038/nature03918
CAS
Article
PubMed
PubMed Central
Google Scholar
Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, Mellinger JD, Smith SB, Digby GJ, Lambert NA, Prasad PD, Ganapathy V (2009) GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res 69:2826–2832. https://doi.org/10.1158/0008-5472.Can-08-4466
CAS
Article
PubMed
PubMed Central
Google Scholar
Wei W, Sun W, Yu S, Yang Y, Ai L (2016) Butyrate production from high-fiber diet protects against lymphoma tumor. Leuk Lymphoma 57:2401–2408. https://doi.org/10.3109/10428194.2016.1144879
CAS
Article
PubMed
Google Scholar
Abrahamse SL, Pool-Zobel BL, Rechkemmer G (1999) Potential of short chain fatty acids to modulate the induction of DNA damage and changes in the intracellular calcium concentration by oxidative stress in isolated rat distal colon cells. Carcinogenesis 20:629–634. https://doi.org/10.1093/carcin/20.4.629
CAS
Article
PubMed
Google Scholar
Ebert MN, Klinder A, Peters WH, Schäferhenrich A, Sendt W, Scheele J, Pool-Zobel BL (2003) Expression of glutathione S-transferases (GSTs) in human colon cells and inducibility of GSTM2 by butyrate. Carcinogenesis 24:1637–1644. https://doi.org/10.1093/carcin/bgg122
CAS
Article
PubMed
Google Scholar
Sharma R, Padwad Y (2020) Nutraceuticals-based immunotherapeutic concepts and opportunities for the mitigation of cellular senescence and aging: a narrative review. Ageing Res Rev 63:101141. https://doi.org/10.1016/j.arr.2020.101141
CAS
Article
PubMed
Google Scholar
Sharma R, Padwad Y (2020) Probiotic bacteria as modulators of cellular senescence: emerging concepts and opportunities. Gut Microbes 11:335–349. https://doi.org/10.1080/19490976.2019.1697148
Article
PubMed
Google Scholar
Sharma R, Padwad Y (2020) Perspectives of the potential implications of polyphenols in influencing the interrelationship between oxi-inflammatory stress, cellular senescence and immunosenescence during aging. Trends Food Sci Technol 98:41–52. https://doi.org/10.1016/j.tifs.2020.02.004
CAS
Article
Google Scholar
Saccon TD, Nagpal R, Yadav H, Cavalcante MB, Nunes ADdC, Schneider A, Gesing A, Hughes B, Yousefzadeh M, Tchkonia T, Kirkland JL, Niedernhofer LJ, Robbins PD, Masternak MM (2021) Senolytic combination of dasatinib and quercetin alleviates intestinal senescence and inflammation and modulates the gut microbiome in aged mice. J Gerontol A Biol Sci Med Sci. https://doi.org/10.1093/gerona/glab002
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Zhu X, Sun Y, Hu B, Sun Y, Jabbar S, Zeng X (2013) Fermentation in vitro of EGCG, GCG and EGCG3"Me isolated from Oolong tea by human intestinal microbiota. Food Res Int 54:1589–1595. https://doi.org/10.1016/j.foodres.2013.10.005
CAS
Article
Google Scholar
Lin J, Nie X, Xiong Y, Gong Z, Chen J, Chen C, Huang Y, Liu T (2020) Fisetin regulates gut microbiota to decrease CCR9(+)/CXCR3(+)/CD4(+) T-lymphocyte count and IL-12 secretion to alleviate premature ovarian failure in mice. Am J Transl Res 12:203–247
CAS
PubMed
PubMed Central
Google Scholar
Chen TJ, Feng Y, Liu T, Wu TT, Chen YJ, Li X, Li Q, Wu YC (2020) Fisetin regulates gut microbiota and exerts neuroprotective effect on mouse model of parkinson’s disease. Front Neurosci. https://doi.org/10.3389/fnins.2020.549037
Article
PubMed
PubMed Central
Google Scholar
Shi T, Bian X, Yao Z, Wang Y, Gao W, Guo C (2020) Quercetin improves gut dysbiosis in antibiotic-treated mice. Food Funct 11:8003–8013. https://doi.org/10.1039/d0fo01439g
CAS
Article
PubMed
Google Scholar
Lin R, Piao M, Song Y (2019) Dietary quercetin increases colonic microbial diversity and attenuates colitis severity in Citrobacter rodentium-infected mice. Front Microbiol 10:1092–1092. https://doi.org/10.3389/fmicb.2019.01092
Article
PubMed
PubMed Central
Google Scholar
Dos Santos AS, de Albuquerque TMR, de Brito Alves JL, de Souza EL (2019) Effects of quercetin and resveratrol on in vitro properties related to the functionality of potentially probiotic lactobacillus strains. Front Microbiol 10:2229–2229. https://doi.org/10.3389/fmicb.2019.02229
Article
PubMed
PubMed Central
Google Scholar
Jeong JJ, Kim KA, Jang SE, Woo J-Y, Han MJ, Kim DH (2015) Orally administrated Lactobacillus pentosus var. plantarum C29 ameliorates age-dependent colitis by inhibiting the nuclear factor-kappa B signaling pathway via the regulation of lipopolysaccharide production by gut microbiota. PLoS One 10:e0116533–e0116533. https://doi.org/10.1371/journal.pone.0116533
CAS
Article
PubMed
PubMed Central
Google Scholar
Jeong JJ, Kim KA, Hwang YJ, Han MJ, Kim DH (2016) Anti-inflammaging effects of Lactobacillus brevis OW38 in aged mice. Benef Microbes 7:707–718. https://doi.org/10.3920/bm2016.0016
CAS
Article
PubMed
Google Scholar
Jeong JJ, Woo JY, Ahn YT, Shim JH, Huh CS, Im SH, Han MJ, Kim DH (2015) The probiotic mixture IRT5 ameliorates age-dependent colitis in rats. Int Immunopharmacol 26:416–422. https://doi.org/10.1016/j.intimp.2015.04.021
CAS
Article
PubMed
Google Scholar
Zierer J, Jackson MA, Kastenmüller G, Mangino M, Long T, Telenti A, Mohney RP, Small KS, Bell JT, Steves CJ, Valdes AM, Spector TD, Menni C (2018) The fecal metabolome as a functional readout of the gut microbiome. Nat Genet 50:790–795. https://doi.org/10.1038/s41588-018-0135-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, Delong EF (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 105:3805–3810. https://doi.org/10.1073/pnas.0708897105
Article
PubMed
PubMed Central
Google Scholar
Vascellari S, Palmas V, Melis M, Pisanu S, Cusano R, Uva P, Perra D, Madau V, Sarchioto M, Oppo V, Simola N, Morelli M, Santoru ML, Atzori L, Melis M, Cossu G, Manzin A (2020) Gut microbiota and metabolome alterations associated with parkinson’s disease. mSystems 5:e00561-e620. https://doi.org/10.1128/mSystems.00561-20
CAS
Article
PubMed
PubMed Central
Google Scholar
Tang Z-Z, Chen G, Hong Q, Huang S, Smith HM, Shah RD, Scholz M, Ferguson JF (2019) Multi-omic analysis of the microbiome and metabolome in healthy subjects reveals microbiome-dependent relationships between diet and metabolites. Front Genet 10:454. https://doi.org/10.3389/fgene.2019.00454
CAS
Article
PubMed
PubMed Central
Google Scholar
Jain A, Li XH, Chen WN (2019) An untargeted fecal and urine metabolomics analysis of the interplay between the gut microbiome, diet and human metabolism in Indian and Chinese adults. Sci Rep 9:9191. https://doi.org/10.1038/s41598-019-45640-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Yang Y, Su J, Zheng X, Wang C, Chen S, Liu J, Lv Y, Fan S, Zhao A, Chen T, Jia W, Wang X (2021) Age-related compositional changes and correlations of gut microbiome, serum metabolome, and immune factor in rats. GeroScience 43:709–725. https://doi.org/10.1007/s11357-020-00188-y
CAS
Article
PubMed
Google Scholar
Wu CS, Muthyala SDV, Klemashevich C, Ufondu AU, Menon R, Chen Z, Devaraj S, Jayaraman A, Sun Y (2021) Age-dependent remodeling of gut microbiome and host serum metabolome in mice. Aging 13:6330–6345. https://doi.org/10.18632/aging.202525
CAS
Article
PubMed
PubMed Central
Google Scholar
Gagliardi A, Totino V, Cacciotti F, Iebba V, Neroni B, Bonfiglio G, Trancassini M, Passariello C, Pantanella F, Schippa S (2018) Rebuilding the gut microbiota ecosystem. Int J Environ Res Public Health 15:1679. https://doi.org/10.3390/ijerph15081679
CAS
Article
PubMed Central
Google Scholar
Bosco N, Noti M (2021) The aging gut microbiome and its impact on host immunity. Genes Immun. https://doi.org/10.1038/s41435-021-00126-8
Article
PubMed
PubMed Central
Google Scholar
Moya A, Ferrer M (2016) Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol 24:402–413. https://doi.org/10.1016/j.tim.2016.02.002
CAS
Article
PubMed
Google Scholar
Bhatia-Dey N, Kanherkar RR, Stair SE, Makarev EO, Csoka AB (2016) Cellular senescence as the causal nexus of aging. Front Genet 7:13. https://doi.org/10.3389/fgene.2016.00013
CAS
Article
PubMed
PubMed Central
Google Scholar