Skip to main content
Log in

Promotion of Egg Production Rate and Quality Using Limosilactobacillus oris BSLO 1801, a Potential Probiotic Screened from Feces of Laying Hens with Higher Egg Productive Performance

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

In this experiment, laying hens were divided into a high productive group (group H) and a low productive group (group L). The purpose of this experiment was to screen and isolate a potential probiotic associated with the laying rate from group H by comparing the results via 16S rDNA high-throughput sequencing. The high-throughput sequencing analysis results showed that there were some differences in the composition of the gut microbiome between groups H and L on the Phylum and Genus levels. Through isolation and identification, we screened 16 lactobacilli strains. Among the 16 strains, S5 showed good acid tolerance, bile salt tolerance, and cholesterol degradation. Therefore, we chose strain S5 (identified as Limosilactobacillus oris, named Limosilactobacillus oris BSLO 1801) as a potential probiotic to promote the productivity of ordinary laying hens. During the animal experiment, 288 Hy-line white hens (30 weeks old) were divided into four groups, with six replications (n = 12) per group. The control group received the basic diet, and the treatment groups received the same basic diet supplemented with 107 CFU/kg, 108 CFU/kg, and 109 CFU/kg of BSLO 1801. The laying hens were acclimated to the environment for 1 week before the initiation of the experiment. Dietary supplementation with 107 CFU/kg and 109 CFU/kg of BSLO 1801 increased the laying rate significantly, and the potential probiotic improved the egg weight in all treatment groups. Additionally, the cholesterol content of the yolk dropped significantly in the 109 CFU/kg group, and the weight of egg yolk was significantly increased in all treatment groups. However, no significant differences in eggshell strength, eggshell thickness, protein height, and Haugh unit were observed among the four groups. These results revealed that lactobacilli spp. are important bacteria of the intestinal microbiome in highly productive laying hens, and BSLO 1801 was isolated as a potential probiotic. Through these animal experiments, we also found that adding BSLO 1801 to the basic diet of laying hens could effectively improve the laying rate, average egg weight, and yolk weight and reduce the cholesterol content in egg yolk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Barko PC, Mcmichael M, Swanson KS, Williams DA (2017) The gastrointestinal microbiome: a review. J Vet Intern Med 32:9–25. https://doi.org/10.1111/jvim.14875

    Article  PubMed  PubMed Central  Google Scholar 

  2. Azad M, Sarker M, Li T, Yin J (2018) Probiotic species in the modulation of gut microbiota: an overview. Biomed Res Int 2018:9478630. https://doi.org/10.1155/2018/9478630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. https://doi.org/10.1038/nature08821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Markowiak P, Śliżewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9:1–12. https://doi.org/10.3390/nu9091021

    Article  CAS  Google Scholar 

  5. FAO, WHO (2006) Probiotics in food — health and nutritional properties and guidelines for evaluation. London, Ontario, Canda. http://www.innocua.net/web/article-950/probiotics-in-food-health-and-nutritional-properties-and-guidelines-for-evaluation. Accessed 30 April -1 May, 2002

  6. Liao SF, Nyachoti M (2017) Using probiotics to improve swine gut health and nutrient utilization. Anim Nutr 3:331–343. https://doi.org/10.1016/j.aninu.2017.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  7. Al-Khalaifah HS (2018) Benefits of probiotics and/or prebiotics for antibiotic-reduced poultry. Poult Sci 97:3807–3815. https://doi.org/10.3382/ps/pey160

    Article  CAS  PubMed  Google Scholar 

  8. Mingmongkolchai S, Panbangred W (2018) Bacillus probiotics: an alternative to antibiotics for livestock production. J Appl Microbiol 124:1334–1346. https://doi.org/10.1111/jam.13690

    Article  CAS  PubMed  Google Scholar 

  9. Roto SM, Rubinelli PM, Ricke SC (2015) An introduction to the avian gut microbiota and the effects of yeast-based prebiotic-type compounds as potential feed additives. Front Vet Sci 2:28. https://doi.org/10.3389/fvets.2015.00028

    Article  PubMed  PubMed Central  Google Scholar 

  10. Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157:2893–2902. https://doi.org/10.1016/j.envpol.2009.05.051

    Article  CAS  PubMed  Google Scholar 

  11. Patterson JA, Burkholder KM (2003) Application of prebiotics and probiotics in poultry production. Poult Sci 82:627–631. https://doi.org/10.1093/ps/82.4.627

    Article  CAS  PubMed  Google Scholar 

  12. Huyghebaert G, Ducatelle R, Immerseel FV (2011) An update on alternatives to antimicrobial growth promoters for broilers. Vet J 187:182–1888. https://doi.org/10.1016/j.tvjl.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  13. Jäger R, Purpura M, Farmer S, Cash HA, Keller D (2018) Probiotic Bacillus coagulans GBI-30, 6086 improves protein absorption and utilization. Probiotics Antimicrob Proteins 10:611–615. https://doi.org/10.1007/s12602-017-9354-y

    Article  CAS  PubMed  Google Scholar 

  14. Piewngam P, Zheng Y, Nguyen TH, Dickey SW, Joo HS, Villaruz AE et al (2018) Pathogen elimination by probiotic Bacillus via signalling interference. Nature 562:532–537. https://doi.org/10.1038/s41586-018-0616-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Galdeano CM, Cazorla SI, Lemme Dumit JM, VélezE PG (2019) Beneficial effects of probiotic consumption on the immune system. Ann Nutr Metab 74:115–124. https://doi.org/10.1159/000496426

    Article  CAS  Google Scholar 

  16. Mountzouris KC, Tsitrsikos P, Palamidi I, Arvaniti A, Mohnl M, Schatzmayr G et al (2010) Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poult Sci 89:58–67. https://doi.org/10.3382/ps.2009-00308

    Article  CAS  PubMed  Google Scholar 

  17. Abdelqader A, Al-Fataftah AR, Daş G (2013) Effects of dietary Bacillus subtilis and inulin supplementation on performance, eggshell quality, intestinal morphology and microflora composition of laying hens in the late phase of production. Anim Feed Sci Technol 179:103–111. https://doi.org/10.1016/j.anifeedsci.2012.11.003

    Article  CAS  Google Scholar 

  18. Deng W, Dong XF, Tong JM, Zhang Q (2012) The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poult Sci 91:575–582. https://doi.org/10.3382/ps.2010-01293

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Y, Li S, Pang Q, Miao Z (2020) Bacillus amyloliquefaciens BLCC1-0238 can effectively improve laying performance and egg quality via enhancing immunity and regulating reproductive hormones of laying Hens. Probiotics Antimicrob Proteins 12:246–252. https://doi.org/10.1007/s12602-019-9524-1

    Article  CAS  PubMed  Google Scholar 

  20. Yang J, Zhan K, Zhang M (2020) Effects of the use of a combination of two Bacillus species on performance, egg quality, small intestinal mucosal morphology, and cecal microbiota profile in aging laying hens. Probiotics Antimicrob Proteins 12(1):204–213. https://doi.org/10.1007/s12602-019-09532-x

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Du W, Lei K, Wang B, Wang Y, Zhou Y et al (2017) Effects of dietary Bacillus licheniformis on gut physical barrier, immunity, and reproductive hormones of laying hens. Probiotics Antimicrob Proteins 9:292–299. https://doi.org/10.1007/s12602-017-9252-3

    Article  CAS  PubMed  Google Scholar 

  22. Alaqil AA, Abbas AO, El-Beltagi HS, El-Atty HKA, Mehaisen GMK, Moustafa ES (2020) Dietary supplementation of probiotic Lactobacillus acidophilus modulates cholesterol levels, immune response, and productive performance of laying hens. Animals (Basel) 10(9):1588. https://doi.org/10.3390/ani10091588

    Article  PubMed  Google Scholar 

  23. Mappley LJ, Tchórzewska MA, Nunez A, Woodward MJ, Bramley PM, La Ragione RM (2013) Oral treatment of chickens with Lactobacillus reuteri LM1 reduces Brachyspira pilosicoli-induced pathology. J Med Microbiol 62:287–296. https://doi.org/10.1099/jmm.0.051862-0

    Article  CAS  PubMed  Google Scholar 

  24. Martín R, Miquel S, Benevides L, Bridonneau C, Robert V, Hudault S et al (2017) Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of F. prausnitzii as a next-generation probiotic. Front Microbiol 8:1226. https://doi.org/10.3389/fmicb.2017.01226

    Article  PubMed  PubMed Central  Google Scholar 

  25. Adnan M, Patel M, Hadi S (2017) Functional and health promoting inherent attributes of Enterococcus hirae F2 as a novel probiotic isolated from the digestive tract of the freshwater fish Catla catla. PeerJ 5:e3085. https://doi.org/10.7717/peerj.3085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227–238. https://doi.org/10.1038/nrmicro2974

    Article  CAS  PubMed  Google Scholar 

  27. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904. https://doi.org/10.1152/physrev.00045.2009

    Article  CAS  PubMed  Google Scholar 

  28. Bortoluzzi C, Pedroso AA, Mallo JJ, Puyalto M, Kim WK, Applegate TJ (2017) Sodium butyrate improved performance while modulating the cecal microbiota and regulating the expression of intestinal immune-related genes of broiler chickens. Poult Sci 96:3981–3993. https://doi.org/10.3382/ps/pex218

    Article  CAS  PubMed  Google Scholar 

  29. Zhao S, Zhang K, Ding X, Celi P, Yan L, Bai S et al (2019) The impact of dietary supplementation of different feed additives on performances of broiler breeders characterized by different egg-laying rate. Poul Sci 98:6091–6099. https://doi.org/10.3382/ps/pez316

    Article  CAS  Google Scholar 

  30. Lokapirnasari WP, Pribadi TB, Arif AA, Soeharsono S, Hidanah S, Harijani N et al (2019) Potency of probiotics Bifidobacterium spp. and Lactobacillus casei to improve growth performance and business analysis in organic laying hens. Vet World 12:860–867. https://doi.org/10.14202/vetworld.2019.860-867

  31. Mikulski D, Jankowski J, Mikulska M, Demey V (2020) Effects of dietary probiotic (Pediococcus acidilactici) supplementation on productive performance, egg quality, and body composition in laying hens fed diets varying in energy density. Poult Sci 99:2275–2285. https://doi.org/10.1016/j.psj.2019.11.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Haddadin MS, Abdulrahim SM, Hashlamoun EA, Robinson RK (1996) The effect of Lactobacillus acidophilus on the production and chemical composition of hen’s eggs. Poult Sci 75:491–494. https://doi.org/10.3382/ps.0750491

    Article  CAS  PubMed  Google Scholar 

  33. Zhu YZ, Cheng JL, Ren M, Yin L, Piao XS (2015) Effect of γ-aminobutyric acid-producing Lactobacillus strain on laying performance, egg quality and serum enzyme activity in hy-line brown hens under heat stress. Asian-Australas J Anim Sci 28:1006–1013. https://doi.org/10.5713/ajas.15.0119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sonnenburg JL, Bäckhed F (2016) Diet-microbiota interactions as moderators of human metabolism. Nature 535:56–64. https://doi.org/10.1038/nature18846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lim S, Cho S, Caetano-Anolles K, Jeong SG, Oh MH, Park BY et al (2015) Developmental dynamic analysis of the excreted microbiome of chickens using next-generation sequencing. J Mol Microbiol Biotechnol 25:262–268. https://doi.org/10.1159/000430865

    Article  CAS  PubMed  Google Scholar 

  36. Pridmore RD, Pittet AC, Praplan F, Cavadini C (2008) Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity. FEMS Microbiol Lett 283:210–215. https://doi.org/10.1111/j.1574-6968.2008.01176.x

    Article  CAS  PubMed  Google Scholar 

  37. Borrero J, Kelly E, O’Connor PM, Kelleher P, Scully C, Cotter PD et al (2018) Plantaricyclin A, a novel circular bacteriocin produced by Lactobacillus plantarum NI326: purification, characterization, and heterologous production. Appl Environ Microbiol 84:e01801-e1817. https://doi.org/10.1128/aem.01801-17

    Article  CAS  PubMed  Google Scholar 

  38. Amer M, Khan S (2012) A comparison between the effects of a probiotic and an antibiotic on the performance of desi chickens. Vet World 5:160–165. https://doi.org/10.5455/vetworld.2012.160-165

    Article  CAS  Google Scholar 

  39. Kurtoglu V, Kurtoglu F, Seker E, Coskun B, Balevi T, Polat ES (2004) Effect of probiotic supplementation on laying hen diets on yield performance and serum and egg yolk cholesterol. Food Addit Contam 21:817–823. https://doi.org/10.1080/02652030310001639530

    Article  CAS  PubMed  Google Scholar 

  40. Ramasamy K, Abdullah N, Wong MC, Karuthan C, Ho YW (2010) Bile salt deconjugation and cholesterol removal from media by Lactobacillus strains used as probiotics in chickens. J Sci Food Agric 90:65–69. https://doi.org/10.1002/jsfa.3780

    Article  CAS  PubMed  Google Scholar 

  41. Gilliland SE, Nelson CR, Maxwell C (1985) Assimilation of cholesterol by Lactobacillus acidophilus. Appl Environ Microbiol 49:377–381. https://doi.org/10.1128/aem.49.2.377-381.1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Corcoran BM, Stanton C, Fitzgerald GF, Ross RP (2005) Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl Environ Microbiol 71:3060–3067. https://doi.org/10.1128/aem.71.6.3060-3067.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Timmerman HM, Veldman A, van den Elsen E, Rombouts FM, Beynen AC (2006) Mortality and growth performance of broilers given drinking water supplemented with chicken-specific probiotics. Poult Sci 85:1383–1388. https://doi.org/10.1093/ps/85.8.1383

    Article  CAS  PubMed  Google Scholar 

  44. Garriga M, Pascual M, Monfort JM, Hugas M (1998) Selection of lactobacilli for chicken probiotic adjuncts. J Appl Microbiol 84:125–132. https://doi.org/10.1046/j.1365-2672.1997.00329.x

    Article  CAS  PubMed  Google Scholar 

  45. Panda AK, Rao S, Raju MV, Sharma SS, Agriculture (2010) Effect of probiotic (Lactobacillus sporogenes) feeding on egg production and quality, yolk cholesterol and humoral immune response of white leghorn layer breeders. J Sci Food Agr 88:43–47. https://doi.org/10.1002/jsfa.2921

    Article  CAS  Google Scholar 

  46. Panda AK, Reddy MR, Rama Rao SV, Praharaj NK (2003) Production performance, serum/yolk cholesterol and immune competence of white leghorn layers as influenced by dietary supplementation with probiotic. Trop Anim Health Prod 35:85–94. https://doi.org/10.1023/a:1022036023325

    Article  CAS  PubMed  Google Scholar 

  47. Tortuero F, Fernández E (1995) Effects of inclusion of microbial cultures in barley-based diets fed to laying hens. Anim Feed Sci Technol 53:260–265. https://doi.org/10.1016/0377-8401(94)00747-w

    Article  Google Scholar 

  48. Park JW, Jeong JS, Lee SI, Kim IH (2016) Effect of dietary supplementation with a probiotic (Enterococcus faecium) on production performance, excreta microflora, ammonia emission, and nutrient utilization in isa brown laying hens. Poult Sci 95:2829–2835. https://doi.org/10.3382/ps/pew241

    Article  CAS  PubMed  Google Scholar 

  49. Yörük MA, Gül M, Hayirli A, Macit M (2004) The effects of supplementation of humate and probiotic on egg production and quality parameters during the late laying period in hens. Poult Sci 83:84–88. https://doi.org/10.1093/ps/83.1.84

    Article  PubMed  Google Scholar 

  50. Liu H, Ding P, Tong Y, He X, Yin Y, Zhang H et al (2021) Metabolomic analysis of the egg yolk during the embryonic development of broilers. Poult Sci 100:101014. https://doi.org/10.1016/j.psj.2021.01.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Spence JD, Jenkins DJ, Davignon J (2012) Egg yolk consumption and carotid plaque. Atherosclerosis 224:469–473. https://doi.org/10.1016/j.atherosclerosis.2012.07.032

    Article  CAS  PubMed  Google Scholar 

  52. Appleby PN, Thorogood M, Mann JI, Key TJ (1999) The Oxford vegetarian study: an overview. Am J Clin Nutr 70:525–531. https://doi.org/10.1093/ajcn/70.3.525s

    Article  Google Scholar 

  53. Nakamura Y, Iso H, Kita Y, Ueshima H, Okada K, Konishi M et al (2006) Egg consumption, serum total cholesterol concentrations and coronary heart disease incidence: Japan public health center-based prospective study. Br J Nutr 96:921–928. https://doi.org/10.1017/bjn20061937

    Article  CAS  PubMed  Google Scholar 

  54. Trichopoulou A, Psaltopoulou T, Orfanos P, Trichopoulos D (2006) Diet and physical activity in relation to overall mortality amongst adult diabetics in a general population cohort. J Intern Med 259:583–591. https://doi.org/10.1111/j.1365-2796.2006.01638.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present study was supported by Sichuan Science and Technology Program (2021YFH0097).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design of the experiments. ML, ZW, and BG performed the experiment. ZW, ML, and NS analyzed the data. ZW and ML drafted the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dong Zeng or Xueqin Ni.

Ethics declarations

Ethical Approval

All animal experiments followed the guidelines for the use and care of laboratory animals (approval number: SYXKchuan2019-187; approved by the Institutional Animal Care and Use Committee of Sichuan Agricultural University).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Z., Sun, N., Luo, M. et al. Promotion of Egg Production Rate and Quality Using Limosilactobacillus oris BSLO 1801, a Potential Probiotic Screened from Feces of Laying Hens with Higher Egg Productive Performance. Probiotics & Antimicro. Prot. 15, 535–547 (2023). https://doi.org/10.1007/s12602-021-09856-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09856-7

Keywords

Navigation