Skip to main content

Advertisement

Log in

In Vitro Anti-staphylococcal and Anti-inflammatory Abilities of Lacticaseibacillus rhamnosus from Infant Gut Microbiota as Potential Probiotic Against Infectious Women Mastitis

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Infectious mastitis is the major cause of early weaning, depriving infants of breastfeeding benefits. It is associated with an inflammatory condition of the breast and lowered resistance to infection. Drug administration during lactation often being contra-indicated, it is therefore important to consider safe therapeutic alternatives to antibiotic and anti-inflammatory therapies, such as probiotics. In this study, we investigated in vitro the probiotic potential of thirteen Lacticaseibacillus (formerly Lactobacillus) rhamnosus strains isolated from the gut microbiota of breastfed healthy infants. Strains were assessed for their β-hemolytic activity, their resistance to antibiotics, and their antimicrobial activities against strains of Staphylococcus and Streptococcus, most often involved in women mastitis. Their immunomodulating abilities were also studied using in vitro stimulation of human immune cells. None of the strains exhibited β-hemolytic activity, and all of them were sensitive to ampicillin, penicillin, tetracycline, rifampicin, erythromycin, chloramphenicol, and imipenem but showed resistance to ceftazidime, trimethoprim/sulfamethoxazole, vancomycin, and cefotaxime, reported to be chromosomally encoded and not inducible or transferable. Four L. rhamnosus strains were selected for their large anti-staphylococcal spectrum: L. rhamnosus VR1-5 and L. rhamnosus VR3-1 inhibiting S. aureus, S. epidermis, and S. warneri and L. rhamnosus CB9-2 and L. rhamnosus CB10-5 exerting antagonistic effect against S. aureus and S. epidermis strains. Antimicrobial compounds released in cell-free supernatant showed proteinaceous nature and were thermoresistant. The immune modulatory analysis of the L. rhamnosus strains revealed two strains with significant anti-inflammatory potential, highlighted by strong induction of IL-10 and a weak pro-Th1 cytokine secretion (IL-12 and IFN-γ). L. rhamnosus CB9-2 combined a large anti-staphylococcal activity spectrum and a promising anti-inflammatory profile. This strain, used individually or in a mixture, can be considered as a probiotic candidate for the management of infectious mastitis during lactation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this manuscript (and its supplementary information files).

References

  1. Wold Health Organization (2000) Mastitis: causes and management. World Health Organization, Geneva, pp 1–45. https://apps.who.int/iris/handle/10665/68543

  2. Giugliani ERJ (2004) Common problems during lactation and their management. J Pediatr (Rio J) 80:8: (5 Suppl.) S147-154. https://doi.org/10.1590/S0021-75572004000700006

  3. Marín M, Arroyo R, Espinosa-Martos I et al (2017) Identification of emerging human mastitis pathogens by MALDI-TOF and assessment of their antibiotic resistance patterns. Front Microbiol 8:1258. https://doi.org/10.3389/fmicb.2017.01258

    Article  PubMed  PubMed Central  Google Scholar 

  4. Contreras GA, Rodríguez JM (2011) Mastitis: comparative etiology and epidemiology. J Mammary Gland Biol Neoplasia 16:339–356. https://doi.org/10.1007/s10911-011-9234-0

    Article  PubMed  Google Scholar 

  5. Patel SH, Vaidya YH, Patel RJ et al (2017) Culture independent assessment of human milk microbial community in lactational mastitis. Sci Rep 7(1):7804. https://doi.org/10.1038/s41598-017-08451-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spencer JP (2008) Management of mastitis in breastfeeding women. Am Fam Physician. 78(6):727-731. https://www.aafp.org/afp/2008/0915/p727.html

  7. Bannerman DD, Paape MJ, Lee JW et al (2004) Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin Diagn Lab Immunol 11:463–472. https://doi.org/10.1128/CDLI.11.3.463-472.2004

    Article  PubMed  PubMed Central  Google Scholar 

  8. Trigo G, Dinis M, França  et al (2009) Leukocyte populations and cytokine expression in the mammary gland in a mouse model of Streptococcus agalactiae mastitis. J Med Microbiol 58:951–958. https://doi.org/10.1099/jmm.0.007385-0

    Article  CAS  PubMed  Google Scholar 

  9. Angelopoulou A, Field D, Ryan CA et al (2018) The microbiology and treatment of human mastitis. Med Microbiol Immunol 207:83–94. https://doi.org/10.1007/s00430-017-0532-z

    Article  PubMed  Google Scholar 

  10. Agriculture Organization of the United Nations /World Health Organization and Food and (2002) Report of a joint FAO/WHO expert consultation on guidelines for the evaluation of probiotics in food. World Health Organization and Food and Agriculture Organization of the United Nations, London Ontario, Canada. https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf

  11. Hill C, Guarner F, Reid G et al (2014) The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  12. Davoodabadi A, Soltan Dallal MM, Rahimi Foroushani A et al (2015) Antibacterial activity of Lactobacillus spp. isolated from the feces of healthy infants against enteropathogenic bacteria. Anaerobe 34:53–58. https://doi.org/10.1016/j.anaerobe.2015.04.014

    Article  PubMed  Google Scholar 

  13. Foligne B, Nutten S, Grangette C et al (2007) Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World J Gastroenterol 13(2):236–43. https://doi.org/10.3748/wjg.v13.i2.236

    Article  PubMed  PubMed Central  Google Scholar 

  14. Oh NS, Joung JY, Lee JY, Kim Y (2018) Probiotic and anti-inflammatory potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant feces. PLos one 13:e0192021. https://doi.org/10.1371/journal.pone.0192021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arroyo R, Martín V, Maldonado A et al (2010) Treatment of infectious mastitis during lactation: antibiotics versus oral administration of lactobacilli isolated from breast milk. Clin Infect Dis 50:1551–1558. https://doi.org/10.1086/652763

    Article  CAS  PubMed  Google Scholar 

  16. Jiménez E, Fernández L, Maldonado A et al (2008) Oral administration of Lactobacillus strains isolated from breast milk as an alternative for the treatment of infectious mastitis during lactation. Appl Environ Microbiol 74:4650–4655. https://doi.org/10.1128/AEM.02599-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goldin BR, Gorbach SL, Saxelin M et al (1992) Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Dig Dis Sci 37:121–128. https://doi.org/10.1007/BF01308354

    Article  CAS  PubMed  Google Scholar 

  18. Westerik N, Kort R, Sybesma W, Reid G (2018) Lactobacillus rhamnosus probiotic food as a tool for empowerment across the value chain in Africa. Front Microbiol 9:1501. https://doi.org/10.3389/fmicb.2018.01501

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pot B, Felis GE, Bruyne KD et al (2014) The genus Lactobacillus. In: Holzapfel WH, Wood BJB (eds) lactic acid bacteria. John Wiley & Sons Ltd, Chichester, United Kingdom, pp 249–353

    Chapter  Google Scholar 

  20. Nissilä E, Douillard FP, Ritari J et al (2017) Genotypic and phenotypic diversity of Lactobacillus rhamnosus clinical isolates, their comparison with strain GG and their recognition by complement system. PLos One 12:e0181292. https://doi.org/10.1371/journal.pone.018129g2

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schillinger U, Lücke FK (1987) Identification of lactobacilli from meat and meat products. Food Microbiol 4:199–208. https://doi.org/10.1016/0740-0020(87)90002-5

    Article  Google Scholar 

  22. Marroki A, Zúñiga M, Kihal M, Pérez-Martínez G (2011) Characterization of Lactobacillus from Algerian goat’s milk based on phenotypic, 16S rDNA sequencing and their technological properties. Braz J Microbiol 42:158–171. https://doi.org/10.1590/S1517-83822011000100020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Linaje R, Coloma MD, Perez-Martinez G, Zuniga M (2004) Characterization of faecal enterococci from rabbits for the selection of probiotic strains. J Appl Microbiol 96:761–771. https://doi.org/10.1111/j.1365-2672.2004.02191.x

    Article  CAS  PubMed  Google Scholar 

  24. Maragkoudakis PA, Zoumpopoulou G, Miaris C et al (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 16:189–199. https://doi.org/10.1016/j.idairyj.2005.02.009

    Article  CAS  Google Scholar 

  25. Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Antibiotic susceptibility of potentially probiotic Lactobacillus species. J Food Prot 61:1636–1643. https://doi.org/10.4315/0362-028X-61.12.1636

    Article  CAS  PubMed  Google Scholar 

  26. Aymerich T, Martin B, Garriga M et al (2006) Safety properties and molecular strain typing of lactic acid bacteria from slightly fermented sausages. J Appl Microbiol 100:40–49. https://doi.org/10.1111/j.1365-2672.2005.02772.x

    Article  CAS  PubMed  Google Scholar 

  27. Bousmaha-Marroki L, Marroki A (2015) Antibiotic susceptibility and heterogeneity in technological traits of lactobacilli isolated from Algerian goat’s milk. J Food Sci Technol 52:4708–4723. https://doi.org/10.1007/s13197-014-1556-7

    Article  CAS  PubMed  Google Scholar 

  28. Boakes E, Woods A, Johnson N, Kadoglou N (2018) Breast infection: a review of diagnosis and management practices. Eur J Breast Health 14:136–143. https://doi.org/10.5152/ejbh.2018.3871

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tagg JR, McGiven AR (1971) Assay system for bacteriocins. Appl Microbiol 21:943–943. https://doi.org/10.1128/AEM.21.5.943-943.1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zaylaa M, Al Kassaa I, Alard J et al (2018) Probiotics in IBD: combining in vitro and in vivo models for selecting strains with both anti-inflammatory potential as well as a capacity to restore the gut epithelial barrier. J Funct Foods 47:304–315. https://doi.org/10.1016/j.jff.2018.05.029

    Article  CAS  Google Scholar 

  31. Angelopoulou A, Warda AK, Hill C, Ross RP (2019) Non-antibiotic microbial solutions for bovine mastitis – live biotherapeutics, bacteriophage, and phage lysins. Crit Rev Microbiol 45:564–580. https://doi.org/10.1080/1040841X.2019.1648381

    Article  CAS  PubMed  Google Scholar 

  32. Kirtzalidou E, Pramateftaki P, Kotsou M, Kyriacou A (2011) Screening for lactobacilli with probiotic properties in the infant gut microbiota. Anaerobe 17:440–443. https://doi.org/10.1016/j.anaerobe.2011.05.007

    Article  CAS  PubMed  Google Scholar 

  33. Rubio R, Jofré A, Martín B et al (2014) Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages. Food Microbiol 38:303–311. https://doi.org/10.1016/j.fm.2013.07.015

    Article  CAS  PubMed  Google Scholar 

  34. Tuo Y, Zhang W, Zhang L et al (2013) Study of probiotic potential of four wild Lactobacillus rhamnosus strains. Anaerobe 21:22–27. https://doi.org/10.1016/j.anaerobe.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  35. Vasiljevic T, Shah NP (2008) Probiotics—from Metchnikoff to bioactives. Int Dairy J 18:714–728. https://doi.org/10.1016/j.idairyj.2008.03.004

    Article  CAS  Google Scholar 

  36. Nagpal R, Kumar A, Kumar M et al (2012) Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol Lett 334:1–15. https://doi.org/10.1111/j.1574-6968.2012.02593.x

    Article  CAS  PubMed  Google Scholar 

  37. Fuochi V, Petronio GP, Lissandrello E, Furneri PM (2015) Evaluation of resistance to low pH and bile salts of human Lactobacillus spp. isolates. Int J Immunopathol Pharmacol 28:426–433. https://doi.org/10.1177/0394632015590948

    Article  CAS  PubMed  Google Scholar 

  38. Gu RX, Li ZH, Chen SL, Luo ZL (2008) Probiotic properties of lactic acid bacteria isolated from stool samples of longevous people in regions of Hotan, Xinjiang and Bama, Guangxi, China. Anaerobe 14:313–317. https://doi.org/10.1016/j.anaerobe.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  39. de Melo Pereira GV, de Oliveira Coelho B, Magalhães Júnior AI et al (2018) How to select a probiotic? A review and update of methods and criteria. Biotechnol Adv 36:2060–2076. https://doi.org/10.1016/j.biotechadv.2018.09.003

    Article  PubMed  Google Scholar 

  40. Parvez S, Malik KA, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100:1171–1185. https://doi.org/10.1111/j.1365-2672.2006.02963.x

    Article  CAS  PubMed  Google Scholar 

  41. Salyers A, Gupta A, Wang Y (2004) Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12:412–416. https://doi.org/10.1016/j.tim.2004.07.004

    Article  CAS  PubMed  Google Scholar 

  42. Campedelli I, Mathur H, Salvetti E, et al (2018) Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl Environ Microbiol 85:e01738-18, /aem/85/1/AEM.01738-18.atom. https://doi.org/10.1128/AEM.01738-18

  43. Álvarez-Cisneros Y, Ponce-Alquicira E (2019) Antibiotic resistance in: Kumar Y (ed) Lactic acid bacteria. Antimicrobial resistance - a global threat. IntechOpen, London, United Kingdom pp 53-73 https://doi.org/10.5772/intechopen.80624. https://www.intechopen.com/books/antimicrobial-resistance-a-global-threat/antibiotic-resistance-in-lactic-acid-bacteria

  44. Société Française de Microbiologie -Comité de l’Antibiogramme/ European Committee on Antimicrobial Susceptibility Testing (2019) Recommandations 2019 V.2.0. Mai. https://www.sfm-microbiologie.org/2019/05/06/casfm-eucast-2019-v2/

  45. Danielsen M, Wind A (2003) Susceptibility of Lactobacillus spp. to antimicrobial agents. Int J Food Microbiol 82:1–11. https://doi.org/10.1016/S0168-1605(02)00254-4

    Article  CAS  PubMed  Google Scholar 

  46. Kõll P, Mändar R, Smidt I et al (2010) Screening and evaluation of human intestinal lactobacilli for the development of novel gastrointestinal probiotics. Curr Microbiol 61:560–566. https://doi.org/10.1007/s00284-010-9653-y

    Article  CAS  PubMed  Google Scholar 

  47. Waśko A, Skrzypczak K, Polak-Berecka M, Kuzdraliński A (2012) Genetic mechanisms of variation in erythromycin resistance in Lactobacillus rhamnosus strains. J Antibiot 65:583–586. https://doi.org/10.1038/ja.2012.73

    Article  CAS  Google Scholar 

  48. Gueimonde M, Sánchez B, de los Reyes-Gavilán GC, Margolles A (2013) Antibiotic resistance in probiotic bacteria. Front Microbiol 4:202.https://doi.org/10.3389/fmicb.2013.00202

  49. Alard J, Peucelle V, Boutillier D et al (2018) New probiotic strains for inflammatory bowel disease management identified by combining and approaches. Benef Microbes 9:317-331. https://doi.org/10.3920/BM2017.0097

  50. Ghamidi D, Folsterholst R, Devrese M et al (2008) Effects of probiotic bacteria and their genomic DNA on TH1/TH2-cytokine production by peripheral blood mononuclear cells (PBMCs) of healthy and allergic subjects. Immunobiology 213:677-692.https://doi.org/10.1016/j.imbio.2008.02.001

  51.  Miettinen M, Matikainen S, Vuopio-Varkila J et al (1998) Lactobacilli and Streptococci Induce Interleukin-12 (IL-12), IL-18, and Gamma Interferon Production in Human Peripheral Blood Mononuclear Cells. Infect Immun 66:6058-6062. https://doi.org/10.1128/IAI.66.12.6058-6062.1998

  52. Pagnini C, Domenico Corleto V, Martorelli M et al (2018) Mucosal adhesion and anti-inflammatory effects of GG in the human colonic mucosa: A proof-of-concept study. World J Gastroenterol 24:4652-4662.https://doi.org/10.3748/wjg.v24.i41.4652

  53. Howard M, Anne O'Garra (1992) Biological properties of interleukin 10. Immunol Today 13:198-200. https://doi.org/10.1016/0167-5699(92)90153-X

Download references

Acknowledgements

The authors express gratitude to Dr Bruno Pot for recommendation, orientations, and critical review of the manuscript. We thank also Danisco for providing the L. acidophilus NCFM.

Funding

The authors received financial support from the Faculty of Live and Natural Sciences, University of Sidi Bel Abbes, Algeria. The authors also received support from the Pasteur Institute of Lille, Institut National de la Santé et de la Recherche Medicale (INSEM), the Centre National de la Recherche Scientifique (CNRS), and the University of Lille.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Bousmaha-Marroki.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15.2 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bousmaha-Marroki, L., Boutillier, D., Marroki, A. et al. In Vitro Anti-staphylococcal and Anti-inflammatory Abilities of Lacticaseibacillus rhamnosus from Infant Gut Microbiota as Potential Probiotic Against Infectious Women Mastitis. Probiotics & Antimicro. Prot. 13, 970–981 (2021). https://doi.org/10.1007/s12602-021-09755-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09755-x

Keywords

Navigation