Skip to main content
Log in

Hyperglycemia-Induced Cardiac Damage Is Alleviated by Heat-Inactivated Lactobacillus reuteri GMNL-263 via Activation of the IGF1R Survival Pathway

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Diabetes-induced cardiomyocyte apoptosis is one of the major causes of mortality in patients with diabetes. Numerous studies have indicated the beneficial effects of Lactobacillus reuteri GMNL-263. However, the protective effect of Lactobacillus reuteri GMNL-263 in cardiac damage associated with diabetes remains poorly understood. In this study, we aimed to investigate the protective effect of Lactobacillus reuteri GMNL-263 on cardiomyocytes in diabetic rats. Five-week-old male Wistar rats were categorized into normal control group, diabetes group (55 mg/kgw STZ-induced diabetes via intraperitoneal injection), and diabetic animals treated with Lactobacillus reuteri GMNL-263 (109 CFU/rat/day, oral administration for 4 weeks). The results were presented that oral administration of a high dose of Lactobacillus reuteri GMNL-263 in diabetic rats activated IGF1R cell survival pathways to decrease the Fas-dependent and mitochondrial-dependent apoptotic pathways induced by hyperglycemia. We found that GMNL-263 significantly attenuated cell apoptosis via the IGF1R survival pathway in diabetic rats. The findings of this study suggest that GMNL-263 treatment maybe an effective therapeutic approach for the prevention of cardiac apoptosis in patients with diabetes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors confirm that all data generated or analyzed during this study are included in this article.

Abbreviations

CFU:

Colony-forming unit

DM:

Diabetes mellitus

GMNL-32:

Lactobacillus paracasei GMNL-32

GMNL-89:

Lactobacillus reuteri GMNL-89

GMNL-263:

Lactobacillus reuteri GMNL-263

PI3K:

Phosphatidylinositol-3 kinase

STZ:

Streptozotocin

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling assay

References

  1. Tabish SA (2007) Is diabetes becoming the biggest epidemic of the twenty-first century? Int J Health Sci (Qassim) 1: V-VIII

  2. Bailes BK (2002) Diabetes mellitus and its chronic complications. AORN J 76:265–282. https://doi.org/10.1016/S0001-2092(06)61065-X

    Article  Google Scholar 

  3. Kovacic JC, Castellano JM, Farkouh ME, Fuster V (2014) The relationships between cardiovascular disease and diabetes: focus on pathogenesis. Endocrinol Metab Clin North Am 43:41–57. https://doi.org/10.1016/j.ecl.2013.09.007

    Article  PubMed  Google Scholar 

  4. FAO/WHO (2001) Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria

  5. Hotel ACP, Cordoba A (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention 5:1–10

    Google Scholar 

  6. Mack DR (2005) Probiotics: mixed messages. Can Fam Physician 51:1455

    PubMed  PubMed Central  Google Scholar 

  7. Markowiak P, Śliżewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9:1021. https://doi.org/10.3390/nu9091021

    Article  CAS  PubMed Central  Google Scholar 

  8. Pepoyan AZ, Manvelyan AM, Balayan MH, McCabe G, Tsaturyan VV, Melnikov VG, Chikindas ML, Weeks R, Karlyshev AV (2020) The effectiveness of potential probiotics Lactobacillus rhamnosus Vahe and Lactobacillus delbrueckii IAHAHI in irradiated rats depends on the nutritional stage of the host. Probiotics & Antimicro Prot 12:1439–1450. https://doi.org/10.1007/s12602-020-09662-7

    Article  CAS  Google Scholar 

  9. Peng J, Xiao X, Hu M, Zhang X (2018) Interaction between gut microbiome and cardiovascular disease. Life Sci 214:153–157. https://doi.org/10.1016/j.lfs.2018.10.063

    Article  CAS  PubMed  Google Scholar 

  10. Wang HF, Lin PP, Chen CH, Yeh YL, Huang CC, Huang CY, Tsai CC (2015) Effects of lactic acid bacteria on cardiac apoptosis are mediated by activation of the phosphatidylinositol-3 kinase/AKT survival-signalling pathway in rats fed a high-fat diet. Int J Mol Med 35:460–470. https://doi.org/10.3892/ijmm.2014.2021

    Article  CAS  PubMed  Google Scholar 

  11. Lai CH, Tsai CC, Kuo WW, Ho TJ, Day CH, Py P, Chung LC, Huang CC, Wang HF, Liao PH (2016) Multi-strain probiotics inhibit cardiac myopathies and autophagy to prevent heart injury in high-fat diet-fed rats. Int J Med Sci 13:277. https://doi.org/10.7150/ijms.14769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hsu TC, Huang CY, Liu CH, Hsu KC, Chen YH, Tzang BS (2017) Lactobacillus paracasei GMNL-32, Lactobacillus reuteri GMNL-89 and L. reuteri GMNL-263 ameliorate hepatic injuries in lupus-prone mice. Br J Nutr 117:1066–1074. https://doi.org/10.1017/S0007114517001039

    Article  CAS  PubMed  Google Scholar 

  13. Tzang BS, Liu CH, Hsu KC, Chen YH, Huang CY, Hsu TC (2017) Effects of oral Lactobacillus administration on antioxidant activities and CD4+ CD25+ forkhead box P3 (FoxP3)+ T cells in NZB/W F1 mice. Br J Nutr 118(5):333–342. https://doi.org/10.1017/S0007114517002112

    Article  CAS  PubMed  Google Scholar 

  14. Hu WS, Rajendran P, Tzang BS, Yeh YL, Shen CY, Chen RJ, Ho TJ, Padma VV, Chen YH, Huang CY (2017) Lactobacillus paracasei GMNL-32 exerts a therapeutic effect on cardiac abnormalities in NZB/W F1 mice. PLoS ONE 12:e0185098. https://doi.org/10.1371/journal.pone.0185098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yeh YL, Lu MC, Tsai BCK, Tzang BS, Cheng SM, Zhang X, Yang LY, Mahalakshmi B, Kuo WW, Xiang P, Huang CY (2020) Heat-killed Lactobacillus reuteri GMNL-263 inhibits systemic lupus erythematosus-induced cardiomyopathy in NZB/W F1 mice. Probiotics & Antimicro Prot. https://doi.org/10.1007/s12602-020-09668-1.Advanceonlinepublication.10.1007/s12602-020-09668-1

    Article  Google Scholar 

  16. Ting WJ, Kuo WW, Hsieh DJY, Yeh YL, Day CH, Chen YH, Chen RJ, Padma VV, Chen YH, Huang CY (2015) Heat killed Lactobacillus reuteri GMNL-263 reduces fibrosis effects on the liver and heart in high fat diet-hamsters via TGF-β suppression. Int J Mol Sci 16:25881–25896. https://doi.org/10.3390/ijms161025881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hsieh FC, Lee CL, Chai CY, Chen WT, Lu YC, Wu CS (2013) Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats. Nutr Metab (Lond) 10:35. https://doi.org/10.1186/1743-7075-10-35

    Article  CAS  Google Scholar 

  18. Lu YC, Yin LT, Chang WT, Huang JS (2010) Effect of Lactobacillus reuteri GMNL-263 treatment on renal fibrosis in diabetic rats. J Biosci Bioeng 110:709–715. https://doi.org/10.1016/j.jbiosc.2010.07.006

    Article  CAS  PubMed  Google Scholar 

  19. Wei M, Ong L, Smith MT, Ross FB, Schmid K, Hoey AJ, Burstow D, Brown L (2003) The streptozotocin-diabetic rat as a model of the chronic complications of human diabetes. Heart Lung Circ 12:44–50. https://doi.org/10.1046/j.1444-2892.2003.00160.x

    Article  PubMed  Google Scholar 

  20. Yang DK, Kang HS (2018) Anti-diabetic effect of cotreatment with quercetin and resveratrol in streptozotocin-induced diabetic rats. Biomol Ther (Seoul) 26:130. https://doi.org/10.4062/biomolther.2017.254

    Article  CAS  Google Scholar 

  21. Hsu HH, Kuo WW, Shih HN, Cheng SF, Yang CK, Chen MC, Tu CC, Viswanadha VP, Liao PH, Huang CY (2019) FOXC1 regulation of miR-31-5p confers oxaliplatin resistance by targeting LATS2 in colorectal cancer. Cancers (Basel) 11:1576. https://doi.org/10.3390/cancers11101576

    Article  CAS  Google Scholar 

  22. Huang CY, Kuo WW, Yeh YL, Ho TJ, Lin JY, Lin DY, Chu CH, Tsai FJ, Tsai CH, Huang CY (2014) ANG II promotes IGF-IIR expression and cardiomyocyte apoptosis by inhibiting HSF1 via JNK activation and SIRT1 degradation. Cell Death Differ 21:1262–1274. https://doi.org/10.1038/cdd.2014.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsai BCK, Hsieh DJY, Lin WT, Tamilselvi S, Day CH, Ho TJ, Chang RL, Viswanadha VP, Kuo CH, Huang CY (2020) Functional potato bioactive peptide intensifies Nrf2-dependent antioxidant defense against renal damage in hypertensive rats. Food Res Int 129:108862. https://doi.org/10.1016/j.foodres.2019.108862

    Article  CAS  PubMed  Google Scholar 

  24. Huang PC, Wang GJ, Fan MJ, Asokan Shibu M, Liu YT, Padma Viswanadha V, Lin YL, Lai CH, Chen YF, Liao HE, Huang CY (2017) Cellular apoptosis and cardiac dysfunction in STZ-induced diabetic rats attenuated by anthocyanins via activation of IGFI-R/PI3K/Akt survival signaling. Environ Toxicol 32:2471–2480. https://doi.org/10.1002/tox.22460

    Article  CAS  PubMed  Google Scholar 

  25. Chen TS, Lai PF, Kuo CH, Day CH, Chen RJ, Ho TJ, Yeh YL, Mahalakshmi B, Padmaviswanadha V, Kuo WW, Huang CY (2020) Resveratrol enhances therapeutic effect on pancreatic regeneration in diabetes mellitus rats receiving autologous transplantation of adipose-derived stem cells. Chin J Physiol 63:122. https://doi.org/10.4103/CJP.CJP_3_20

    Article  CAS  PubMed  Google Scholar 

  26. Lu CH, Shen CY, Hsieh DJY, Lee CY, Chang RL, Ju DT, Pai PY, Viswanadha VP, Ou HC (1985) Huang CY (2019) Deep ocean minerals inhibit IL-6 and IGFIIR hypertrophic signaling pathways to attenuate diabetes-induced hypertrophy in rat hearts. J Appl Physiol 127:356–364. https://doi.org/10.1152/japplphysiol.00184.2019

    Article  CAS  Google Scholar 

  27. Matsuzaki T, Nagata Y, Kado S, Uchida K, Hashimoto S, Yokokura T (1997) Effect of oral administration of Lactobacillus casei on alloxan-induced diabetes in mice. APMIS 105:637–642. https://doi.org/10.1111/j.1699-0463.1997.tb05065.x

    Article  CAS  PubMed  Google Scholar 

  28. Matsuzaki T, Nagata Y, Kado S, Uchida K, Kato I, Hashimoto S, Yokokura T (1997) Prevention of onset in an insulin-dependent diabetes mellitus model, NOD mice, by oral feeding of Lactobacillus casei. APMIS 105:643–649. https://doi.org/10.1111/j.1699-0463.1997.tb05066.x

    Article  CAS  PubMed  Google Scholar 

  29. Morita H, He F, Kawase M, Kubota A, Hiramatsu M, Kurisaki J, Salminen S (2006) Preliminary human study for possible alteration of serum immunoglobulin E production in perennial allergic rhinitis with fermented milk prepared with Lactobacillus gasseri TMC0356. Microbiol Immunol 50:701–706. https://doi.org/10.1111/j.1348-0421.2006.tb03842.x

    Article  CAS  PubMed  Google Scholar 

  30. Liang TW, Wu YY, Huang TY, Wang CY, Yen YH, Liu CP, Chen YC, Wang SL (2010) Conversion of squid pen by a novel strain Lactobacillus paracasei subsp. paracasei TKU010, and its application in antimicrobial and antioxidants activity. J Gen Appl Microbiol 56:481–489. https://doi.org/10.2323/jgam.56.481

    Article  CAS  PubMed  Google Scholar 

  31. Wang G, Yin S, An H, Chen S, Hao Y (2011) Coexpression of bile salt hydrolase gene and catalase gene remarkably improves oxidative stress and bile salt resistance in Lactobacillus casei. J Ind Microbiol Biotechnol 38:985–990. https://doi.org/10.1007/s10295-010-0871-x

    Article  CAS  PubMed  Google Scholar 

  32. Brady LJ, Gallaher DD, Busta FF (2000) The role of probiotic cultures in the prevention of colon cancer. J Nutr 130:410S-414S. https://doi.org/10.1093/jn/130.2.410S

    Article  CAS  PubMed  Google Scholar 

  33. Huang YT, Liu CH, Yang YC, Aneja R, Wen SY, Huang CY, Kuo WW (2019) ROS-and HIF1α-dependent IGFBP3 upregulation blocks IGF1 survival signaling and thereby mediates high-glucose-induced cardiomyocyte apoptosis. J Cell Physiol 234:13557–13570. https://doi.org/10.1002/jcp.28034

    Article  CAS  PubMed  Google Scholar 

  34. Shibu MA, Kuo CH, Chen BC, Ju DT, Chen RJ, Lai CH, Huang PJ, Viswanadha VP, Kuo WW, Huang CY (2018) Oolong tea prevents cardiomyocyte loss against hypoxia by attenuating p-JNK mediated hypertrophy and enhancing P-IGF1R, p-akt, and p-Badser136 activity and by fortifying NRF2 antioxidation system. Environ Toxicol 33:220–233. https://doi.org/10.1002/tox.22510

    Article  CAS  PubMed  Google Scholar 

  35. Hu WS, Ting WJ, Chiang WD, Py P, Yeh YL, Chang CH, Lin WT, Huang CY (2015) The heart protection effect of alcalase potato protein hydrolysate is through IGF1R-PI3K-Akt compensatory reactivation in aging rats on high fat diets. Int J Mol Sci 16:10158–10172. https://doi.org/10.3390/ijms160510158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Khosravi-Far R (2004) Death receptor signals to the mitochondria. Cancer Biol Ther 3:1051–1057. https://doi.org/10.4161/cbt.3.11.1173

    Article  CAS  PubMed  Google Scholar 

  37. Gupta S (2001) Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sci 69:2957–2964. https://doi.org/10.1016/S0024-3205(01)01404-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported grant CMU-103-ASIA-13 from China Medical University and Asia University. We would like to acknowledge Dr. Hao-Chin Wang and Dr. B. Mahalakshmi, who provided suggestions during the writing of this manuscript draft.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Ker-Ping Koay, Chia-Hua Kuo, and Chih-Yang Huang; data curation: Bruce Chi-Kang Tsai and Wei-Wen Kuo; formal analysis: Hsiang-Ning Luk, Bruce Chi-Kang Tsai, and Chih-Yang Huang; funding acquisition: Wei-Wen Kuo and Chih-Yang Huang; project administration: Cecilia Hsuan Day, Ray-Jade Chen, and Michael Yu-Chih Chen; resources: Ray-Jade Chen and Michael Yu-Chih Chen; supervision: Chih-Yang Huang; writing—original draft: Bruce Chi-Kang Tsai; writing—review and editing: Ker-Ping Koay, V. Vijaya Padma, Wei-Wen Kuo, and Chih-Yang Huang.

Corresponding author

Correspondence to Chih-Yang Huang.

Ethics declarations

Ethics Approval

All animal experiment was approved by the Institute Animal Care and Use Committee of China Medical University, Taichung, Taiwan (2017-121).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 379 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koay, KP., Tsai, B.CK., Kuo, CH. et al. Hyperglycemia-Induced Cardiac Damage Is Alleviated by Heat-Inactivated Lactobacillus reuteri GMNL-263 via Activation of the IGF1R Survival Pathway. Probiotics & Antimicro. Prot. 13, 1044–1053 (2021). https://doi.org/10.1007/s12602-021-09745-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09745-z

Keywords

Navigation