Skip to main content

Dietary Supplementation of Potential Probiotics Bacillus subtilis, Bacillus licheniformis, and Saccharomyces cerevisiae and Synbiotic Improves Growth Performance and Immune Responses by Modulation in Intestinal System in Broiler Chicks Challenged with Salmonella Typhimurium

Abstract

This study evaluates the effects of probiotics and synbiotics on the performance, immune responses, and intestinal morphology, and the expression of immunity-related genes of broiler chicks challenged with Salmonella typhimurium. Three hundred and sixty broiler chicks were divided into six groups, including broiler chicks challenged and non-challenged with S. typhimurium and fed with probiotic, synbiotic, and basal diet without additive. Growth performance (food intake, daily gain, feed conversion ratio, and mortality), immune responses (antibody titer against sheep red blood cells, immunoglobulins G and M), intestinal morphology, lactic acid bacteria population, and the expression of immunity-related genes (interferon-γ, interleukins 6 and 12, and tumor necrosis factor-α) were investigated. The administration of S. typhimurium decreased growth performance (P = 0.0001), immune responses (P = 0.0001), intestinal morphology (P = 0.0001), lactic acid bacteria population (P = 0.0001), and the expression of immunity-related genes (P = 0.0001) of broiler chickens. However, broiler chicks fed with probiotic (P = 0.001) and synbiotic (P = 0.0001) showed better growth performance, immune responses, intestinal morphology, lactic acid bacteria population, and the expression of immunity-related genes in comparison with infected broiler chicks fed with basal diet lack of probiotic and synbiotic. Feeding probiotics (P = 0.001) and synbiotics (P = 0.0001) showed positive effects for challenged and non-challenged broiler chicks. In sum, feeding synbiotic and probiotic alleviated the negative effects of S. typhimurium on growth and immunity of broiler chicks. It can be suggested to apply synbiotic and probiotics as benefit additive against infectious challenges, such as S. typhimurium.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Laptev G, Filippova VA, Kochish II, Yildirim EA, Ilina LA, Dubrovin AV, Brazhnik EA, Novikova NI, Novikova OB, Dmitrieva ME, Smolensky VI, Surai PF, Grin DK, Romanov MN (2019) Examination of the expression of immunity genes and bacterial profiles in the caecum of growing chicks infected with Salmonellaenteritidis and fed a phytobiotic. Animals 9:615–639. https://doi.org/10.3390/ani9090615

    Article  PubMed Central  Google Scholar 

  2. Fisinin VI, Surai P (2013) Gut immunity in birds: Facts and reflections (review). Selskok Biol 4:3–25. https://doi.org/10.15389/agrobiology.2013.4.3eng

  3. Finstad S, O’Bryan CA, Marcy JA, Crandall PG, Ricke SC (2012) Salmonella and broiler processing in the United States: relationship to foodborne salmonellosis. Food Res Int 45:789–794. https://doi.org/10.1016/j.foodres.2011.03.057

    Article  Google Scholar 

  4. Mora LZ, Nuño K, Vázquez-Paulino O, Avalos H, Castro-Rosas J, Gómez-Aldapa C, Angulo C, Ascencio F, Villarruel-López A (2019) Effect of a synbiotic mix on intestinal structural changes, and Salmonellatyphimurium and Clostridium perfringens colonization in broiler chicks. Animals 9:777–785. https://doi.org/10.3390/ani9100777

    Article  Google Scholar 

  5. Cooper KK, Songer JG, Uzal FA (2013) Diagnosing clostridial enteric disease in poultry. J Vet Diagn Invest 25:314–327. https://doi.org/10.1177/1040638713483468

    Article  PubMed  Google Scholar 

  6. Olkowski AA, Wojnarowicz C, Chirino-Trejo M, Laarveld B, Sawicki G (2008) Sub-clinical necrotic enteritis in broiler chicks: novel etiological consideration based on ultra-structural and molecular changes in the intestinal tissue. Res Vet Sci 85:543–553. https://doi.org/10.1016/j.rvsc.2008.02.007

    CAS  Article  PubMed  Google Scholar 

  7. Van Immerseel F, Rood JI, Moore RJ, Titball RW (2009) Rethinking our understanding of the pathogenesis of necrotic enteritis in chicks. Trends Microbiol 17:32–36. https://doi.org/10.1016/j.tim.2008.09.005

    CAS  Article  PubMed  Google Scholar 

  8. Crhanova M, Hradecka H, Faldynova M, Matulova M, Havlickova H, Sisak F, Rychlik I (2011) Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar Enteritidis infection. Infect Immun 79:2755–2763. https://doi.org/10.1128/IAI.01375-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Giansanti F, Giardi MF, Botti D (2006) Avian cytokines-an overview. Curr Pharm Des 12:3083–3099. https://doi.org/10.2174/138161206777947542

    CAS  Article  PubMed  Google Scholar 

  10. Jazi V, Mohebodini H, Ashayerizadeh A, Shabani A, Barekatain R (2019) Fermented soybean meal ameliorates Salmonella Typhimurium infection in young broiler chicks. Poult Sci 98:5648–5660. https://doi.org/10.3382/ps/pez338

    CAS  Article  PubMed  Google Scholar 

  11. Stoycheva M, Murdjeva M (2005) Serum levels of interferon-γ, interleukin-12, tumour necrosis factor-α, and interleukin-10, and bacterial clearance in patients with gastroenteric Salmonella infection. Scand J Infect Dis 37:11–14. https://doi.org/10.1080/00365540410026068

    CAS  Article  PubMed  Google Scholar 

  12. Huyghebaert G, Ducatelle R, Van Immerseel F (2011) An update on alternatives to antimicrobial growth promoters for broilers. Vet J 187:182–188. https://doi.org/10.1016/j.tvjl.2010.03.003

    CAS  Article  PubMed  Google Scholar 

  13. Gaucher ML, Quessy S, Letellier A, Arsenault J, Boulianne M (2015) Impact of a drug-free program on broiler chicken growth performances, gut health, Clostridium perfringens and Campylobacter jejuni occurrences at the farm level. Poult Sci 94:1791–1801. https://doi.org/10.3382/ps/pev142

    CAS  Article  PubMed  Google Scholar 

  14. He T, Long S, Mahfuz S, Wu D, Wang X, Wei X, Piao X (2019) Effects of probiotics as antibiotics substitutes on growth performance, serum biochemical parameters, intestinal morphology, and barrier function of broilers. Animals 9:985–991. https://doi.org/10.3390/ani9110985

    Article  PubMed Central  Google Scholar 

  15. Borda-Molina D, Seifert J, Camarinha-Silva A (2018) Current perspectives of the chicken gastrointestinal tract and its microbiome. Comput Struct Biotechnol J 16:131–139. https://doi.org/10.1016/j.csbj.2018.03.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  17. Adhikari PA, Kim WM (2017) Overview of prebiotics and probiotics: focus on performance, gut health and immunity–a review. Ann Anim Sci 17:949–966. https://doi.org/10.1515/aoas-2016-0092

    Article  Google Scholar 

  18. Naghi AS, Ghasemi HA, Taherpour K (2017) Evaluation of Aloe vera and synbiotic as antibiotic growth promoter substitutions on performance, gut morphology, immune responses and blood constitutes of broiler chicks. Anim Sci J 88:306–313. https://doi.org/10.1111/asj.12629

    CAS  Article  Google Scholar 

  19. Adil S, Magray SN (2012) Impact and manipulation of gut microflora in poultry: a review. J Anim Vet Adv 6:873–877. https://doi.org/10.3923/javaa.2012.873.877

    Article  Google Scholar 

  20. Sathishkumar J, Partha PD, Prakash CS, Barun R, Paresh NC (2017) Use of Bacillus subtilis PB6 as a potential antibiotic growth promoter replacement in improving performance of broiler birds. Poult Sci 96:2614–2622. https://doi.org/10.3382/ps/pex079

    CAS  Article  Google Scholar 

  21. Humam AM, Loh TC, Foo HL (2019) Effects of feeding different postbiotics produced by Lactobacillus plantarum on growth performance, carcass yield, intestinal morphology, gut microbiota composition, immune status, and growth gene expression in broilers under heat stress. Animals 9:644–657. https://doi.org/10.3390/ani9090644

    Article  PubMed Central  Google Scholar 

  22. Dunislawska A, Slawinska A, Stadnicka K (2017) Synbiotics for broiler chicks-in vitro design and evaluation of the influence on host and selected microbiota populations following In ovo delivery. PLoS ONE 12:e0168587. https://doi.org/10.1371/J.pone.0168587

    Article  PubMed  PubMed Central  Google Scholar 

  23. Aviagen. Ross 308 broiler (2019) Nutrition specification. Newbridge, Midlothian, Scotland, UK: Ross Breeders Limited. https://en.aviagen.com/brands/ross/products/ross-308. Accessed 14 June 2019

  24. AOAC (2019) Official methods of analysis. Washington DC: Association of Official Analytical Chemist. https://www.aoac.org/official-methods-of-analysis-21st-edition-2019/. Accessed 14 January 2019

  25. He S, Yin Q, Xiong Y, Liu D, Hu H (2020) Effects of dietary fumaric acid on the growth performance, immune response, relative weight and antioxidant status of immune organs in broilers exposed to chronic heat stress. Czech J Anim Sci 65:104–113. https://doi.org/10.17221/13/2020-CJAS

  26. Wang SM, Khandekar JD, Kaul KL, Winchester DJ, Morimoto RI (1999) A method for the quantitative analysis of human heat shock gene expression using a multiplex RT-PCR assay. Cell Stress Chaperone 4:153–161. https://doi.org/10.1379/1466-1268(1999)004%3c0153:amftqa%3e2.3.co;2

    CAS  Article  Google Scholar 

  27. Eeckhaut V, Wang J, Van Parys A, Haesebrouck F, Joossens M, Falony G, Raes J, Ducatelle R, Van Immerseel F (2016) The probiotic Butyricicoccus pullicaecorum reduces feed conversion and protects from potentially harmful intestinal microorganisms and necrotic enteritis in broilers. Front Microbiol 7:1416–1425. https://doi.org/10.3389/fmicb.2016.01416

    Article  PubMed  PubMed Central  Google Scholar 

  28. Park JH, Kim IH (2014) Supplemental effect of probiotic Bacillus subtilis B2A on productivity, organ weight, intestinal Salmonella microflora, and breast meat quality of growing broiler chicks. Poult Sci 93:2054–2059. https://doi.org/10.3382/ps.2013-03818

    CAS  Article  PubMed  Google Scholar 

  29. Jazi V, Foroozandeh AD, Toghyani M, Dastar B, Rezaie Koochaksaraie R, Toghyani M (2018) Effects of Pediococcus acidilactici, mannan-oligosaccharide, butyric acid and their combination on growth performance and intestinal health in young broiler chickens challenged with Salmonella Typhimurium. Poult Sci 97:2034–2043. https://doi.org/10.3382/ps/pey035

    CAS  Article  PubMed  Google Scholar 

  30. Deng W, Dong XF, Tong JM, Zhang Q (2012) The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poult Sci 91:575–582. https://doi.org/10.3382/ps.2010-01293

    CAS  Article  PubMed  Google Scholar 

  31. Teng P, Kim WK (2018) Review: roles of prebiotics in intestinal ecosystem of broilers. Front Vet Sci 5:245. https://doi.org/10.3389/fvets.2018.00245

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ayala Monter MA, Sánchez DH, Ruiz RP, González Muñoz SS, Bárcena Gama JR, Mendo OH, Salado NT (2018) Prebiotic effect of two sources of inulin on in vitro growth of Lactobacillus salivarius and Enterococcus faecium. Rev Mex Cienc Pecu 9:346–361. https://doi.org/10.22319/rmcp.v9i2.4488

  33. Ding XM, Li DD, Bai SP, Wang JP, Zeng QF, Su ZW, Zhang KY (2018) Effect of dietary xylooligosaccharides on intestinal characteristics, gut microbiota, cecal short-chain fatty acids, and plasma immune parameters of laying hens. Poult Sci 97:874–881. https://doi.org/10.3382/ps/pex372

    CAS  Article  PubMed  Google Scholar 

  34. Chalghoumi RC, Marcq A, Thewis D, Portetelle L, Beckers Y (2009) Effects of feed supplementation with specific hen egg yolk antibody (immunoglobulin Y) on Salmonella species cecal colonization and growth performances of challenged broiler chickens. Poult Sci 88:2081–2092. https://doi.org/10.3382/ps.2009-00173

    CAS  Article  PubMed  Google Scholar 

  35. Shao Y, Wang Z, Tian X, Guo Y, Zhang H (2016) Yeast β-D-glucans induced antimicrobial peptide expressions against Salmonella infection in broiler chickens. Int J Biol Macromol 85:573–584. https://doi.org/10.1016/j.ijbiomac.2016.01.031

    CAS  Article  PubMed  Google Scholar 

  36. Kalia S, Bharti VK, Gogoi D, Giri A, Kumar B (2017) Studies on the growth performance of different broiler strains at high altitude and evaluation of probiotic effect on their survivability. Sci Rep 7:46074. https://doi.org/10.1038/srep46074

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Chen F, Gao SS, Zhu LQ, Qin SY, Qiu HL (2018) Effects of dietary Lactobacillus rhamnosus CF supplementation on growth, meat quality, and microenvironment in specific pathogen-free chickens. Poult Sci 97:118–123. https://doi.org/10.3382/ps/pex261

    CAS  Article  PubMed  Google Scholar 

  38. Shojadoost B, Vince AR, Prescott JF (2012) The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens: a critical review. Vet Res 43:74. https://doi.org/10.1186/1297-9716-43-74

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Fatahi MM, Ebeid TA, Al-Homidan I, Soliman NK, Abou-Emera OK (2017) Influence of probiotic supplementation on immune response in broilers raised under hot climate. Br Poult Sci 58:512–516. https://doi.org/10.1080/00071668.2017.1332405

    CAS  Article  Google Scholar 

  40. Gheisari AA, Kholeghipour B (2006) Effect of dietary inclusion of live yeast (Saccharomyces cerevisiae) on growth performance, immune responses and blood parameters of broiler chickens. In Proceedings of the XII European Poultry Conference, Verona, Italy, 9 November. www.cabi.org/WPSA-italy-2006

  41. Burkholder KM, Thompson KL, Einstein ME, Applegate TJ, Patterson JA (2008) Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella Enteritidis colonization in broilers. Poult Sci 87:1734–1741. https://doi.org/10.3382/ps.2008-00107

    CAS  Article  PubMed  Google Scholar 

  42. Zhang J, Huang Y (2006) The immune system: a new look at pain. Chin Med J 119:930–938

    CAS  Article  Google Scholar 

  43. Haghighi HR, Abdul-Careem MF, Dara RA, Chambers JR, Sharif S (2008) Cytokine gene expression in chicken cecal tonsils following treatment with probiotics and Salmonella infection. Vet Microbiol 126:225–233. https://doi.org/10.1016/j.vetmic.2007.06.026

    CAS  Article  PubMed  Google Scholar 

  44. Bao SK, Beagley M, France J, Shen B, Husband A (2000) Interferon-γ plays a critical role in intestinal immunity against Salmonella Typhimurium infection. Immunol 99:464–472. https://doi.org/10.1046/j.1365-2567.2000.00955.x

    CAS  Article  Google Scholar 

  45. John B, Rajagopal D, Pashine A, Rath S, George S, Bal V (2002) Role of IL-12-independent and IL-12-dependent pathways in regulating generation of the IFN-γ component of T cell responses to Salmonella Typhimurium. J Immunol 169:2545–2552. https://doi.org/10.4049/jimmunol.169.5.2545

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Islamic Azad University, Arak Branch for preparation of the equipments.

Funding

This work was supported by Islamic Azad University, Arak Branch, and extracted from Ph.D dissertation.

Author information

Authors and Affiliations

Authors

Contributions

Three first authors had similar partners for design, conducting, data analysis, and writing the manuscript. Fourth author helped for microbial analyses and gene expression.

Corresponding author

Correspondence to Jafar Fakhraei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fazelnia, K., Fakhraei, J., Yarahmadi, H.M. et al. Dietary Supplementation of Potential Probiotics Bacillus subtilis, Bacillus licheniformis, and Saccharomyces cerevisiae and Synbiotic Improves Growth Performance and Immune Responses by Modulation in Intestinal System in Broiler Chicks Challenged with Salmonella Typhimurium. Probiotics & Antimicro. Prot. 13, 1081–1092 (2021). https://doi.org/10.1007/s12602-020-09737-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09737-5

Keywords

  • Broiler chicks
  • Growth
  • Immunity
  • Intestinal system
  • Salmonella