Skip to main content

Advertisement

Log in

Biodiversity and Phylogenetic Relationships of Novel Bacteriocinogenic Strains Isolated from Animal’s Droppings at the Zoological Garden of Lille, France

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

This study aimed at exploring droppings of animals living in captivity in the zoological garden (Zoo) of Lille (France), as novel sources of bacteriocinogenic strains. A collection of 295 bacterial isolates was constituted from droppings of capybara, alpaca, muntjac, zebra, tapir, rhinoceros, binturong, armadillo, saki monkey and cockatoo. Of 295 isolates, 51 exhibited antagonism against a panel of pathogenic target bacteria like Escherichia coli MC4100, Clostridium perfringens DSM 756 and Salmonella enterica subsp. enterica Newport ATCC6962. Remarkably, within this collection, only 2 Gram-negative bacilli exhibited activity against E. coli MC4100 strain used as target organism. Then, the 16S rDNA sequencing revealed these thereafter cited species, Pediococcus pentosaceus, Weissella cibaria, E. coli, Lactobacillus reuteri, Enterococcus hirae and Enterococcus faecalis. Characterization of this antagonism has revealed 11 strains able producing extracellular protease-sensitive inhibitory compounds. These strains included E. coli ICVB442 and ICVB443, Ent. faecalis ICVB472, ICVB474, ICVB477 ICVB479, ICVB481, ICVB497 and ICVB501 and Ped. pentosaceus ICVB491 and ICVB492. The genomes of the 5 most promising bacteriocinogenic strains were sequenced and analysed with Bagel4 software. Afterwards, this bioinformatics analysis permitted to locate genes encoding bacteriocins like colicin Y (E. coli), enterocin 1071A, enterocin 107 B (Ent. faecalis) and penocin A (Ped. pentosaceus), associating the above-mentioned antibacterial activity of proteinaceous nature to possible production of bacteriocins. All these results enabled us to select different bacteriocinogenic strains for a further characterization in terms of beneficial traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. De Angelis M, Siragusa S, Berloco M et al (2006) Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding. Res Microbiol 157:792–801. https://doi.org/10.1016/j.resmic.2006.05.003

    Article  PubMed  Google Scholar 

  2. Fouhse JM, Zijlstra RT, Willing BP (2016) The role of gut microbiota in the health and disease of pigs. Anim Front 6:30–36. https://doi.org/10.2527/af.2016-0031

    Article  Google Scholar 

  3. Tsuchida S, Ushida K (2015) Characterization of intestinal bacterial communities of western lowland gorillas (Gorilla gorilla gorilla), central chimpanzees (Pan troglodytes troglodytes), and a forest elephant (Loxodonta africana cyclotis) living in Moukalaba-Doudou National Park in Gabon. Tropics 23:175–183. https://doi.org/10.3759/tropics.23.175

    Article  Google Scholar 

  4. Endo A, Futagawa-Endo Y, Dicks LMT (2010) Diversity of Lactobacillus and Bifidobacterium in feces of herbivores, omnivores and carnivores. Anaerobe 16:590–596. https://doi.org/10.1016/j.anaerobe.2010.10.005

    Article  PubMed  Google Scholar 

  5. Aarestrup FM (2015) The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward. Philos Trans R Soc Lond Ser B Biol Sci 370(1670):20140085. https://doi.org/10.1098/rstb.2014.0085

    Article  Google Scholar 

  6. Yang F, Hou C, Zeng X, Qiao S (2015) The use of lactic acid bacteria as a probiotic in swine diets. Pathogens 4:34–45. https://doi.org/10.3390/pathogens4010034

    Article  PubMed  PubMed Central  Google Scholar 

  7. Turner JL, Dritz SS, Minton JE (2001) Alternatives to conventional antimicrobials in swine diets. PAS 17:217–226. https://doi.org/10.15232/S1080-7446(15)31633-8

    Article  Google Scholar 

  8. Reavill D (2014) Pathology of the exotic companion mammal gastrointestinal system. Vet Clin North Am Exot Anim Pract 17:145–164. https://doi.org/10.1016/j.cvex.2014.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  9. Leotta GA, Deza N, Origlia J, Toma C, Chinen I, Miliwebsky E, Iyoda S, Sosa-Estani S, Rivas M (2006) Detection and characterization of shiga toxin-producing Escherichia coli in captive non-domestic mammals. Vet Microbiol 118:151–157. https://doi.org/10.1016/j.vetmic.2006.07.006

    Article  CAS  PubMed  Google Scholar 

  10. Stirling J, Griffith M, Blair I, Cormican M, Dooley JSG, Goldsmith CE, Glover SG, Loughrey A, Lowery CJ, Matsuda M, McClurg R, McCorry K, McDowell D, McMahon A, Cherie Millar B, Nagano Y, Rao JR, Rooney PJ, Smyth M, Snelling WJ, Xu J, Moore JE (2008) Prevalence of gastrointestinal bacterial pathogens in a population of zoo animals. Zoonoses Public Health 55:166–172. https://doi.org/10.1111/j.1863-2378.2007.01099.x

    Article  CAS  PubMed  Google Scholar 

  11. Dobiasova H, Dolejska M, Jamborova I, Brhelova E, Blazkova L, Papousek I, Kozlova M, Klimes J, Cizek A, Literak I (2013) Extended spectrum beta-lactamase and fluoroquinolone resistance genes and plasmids among Escherichia coli isolates from zoo animals. Czech Republic FEMS Microbiol Ecol 85:604–611. https://doi.org/10.1111/1574-6941.12149

    Article  CAS  PubMed  Google Scholar 

  12. Kenny M, Smidt H, Mengheri E, Miller B (2011) Probiotics – do they have a role in the pig industry? Animal 5:462–470. https://doi.org/10.1017/S175173111000193X

    Article  CAS  PubMed  Google Scholar 

  13. Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, Drider D (2019) Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front Microbiol 10:57. https://doi.org/10.3389/fmicb.2019.00057

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kechaou N, Chain F, Gratadoux JJ, Blugeon S, Bertho N, Chevalier C, le Goffic R, Courau S, Molimard P, Chatel JM, Langella P, Bermúdez-Humarán LG (2013) Identification of one novel candidate probiotic Lactobacillus plantarum strain active against influenza virus infection in mice by a large-scale screening. Appl Environ Microbiol 79:1491–1499. https://doi.org/10.1128/AEM.03075-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu Y, Dun Y, Li S et al (2015) Dietary Enterococcus faecalis LAB31 improves growth performance, reduces diarrhea, and increases fecal Lactobacillus number of weaned piglets. PLoS One 10(1):e0116635. https://doi.org/10.1371/journal.pone.0116635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lähteinen T, Rinttilä T, Koort JMK, Kant R, Levonen K, Jakava-Viljanen M, Björkroth J, Palva A (2015) Effect of a multispecies Lactobacillus formulation as a feeding supplement on the performance and immune function of piglets. Livest Sci 180:164–171. https://doi.org/10.1016/j.livsci.2015.07.016

    Article  Google Scholar 

  17. Burel C (2012) Alternatives to antimicrobial growth promoters (AGPs) in animal feed. In: Fink-Gremmels J (ed) Animal Feed Contamination: effects on livestock and food safety. Woodhead Publishing Ltd., Cambridge, pp 432–448

    Chapter  Google Scholar 

  18. Naghmouchi K, Le Lay C, Baah J, Drider D (2012) Antibiotic and antimicrobial peptide combinations: synergistic inhibition of Pseudomonas fluorescens and antibiotic-resistant variants. Res Microbiol 163:101–108. https://doi.org/10.1016/j.resmic.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  19. Cotter PD, Ross RP, Hill C (2013) Bacteriocins - a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105. https://doi.org/10.1038/nrmicro2937

    Article  CAS  PubMed  Google Scholar 

  20. Cavera VL, Arthur TD, Kashtanov D, Chikindas ML (2015) Bacteriocins and their position in the next wave of conventional antibiotics. Int J Antimicrob Agents 46:494–501. https://doi.org/10.1016/j.ijantimicag.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  21. Drider D, Bendali F, Naghmouchi K, Chikindas ML (2016) Bacteriocins: not only antibacterial agents. Probiotics Antimicrob Proteins 8:177–182. https://doi.org/10.1007/s12602-016-9223-0

    Article  CAS  PubMed  Google Scholar 

  22. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LD (2018) Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 49:23–28. https://doi.org/10.1016/j.copbio.2017.07.011

    Article  CAS  PubMed  Google Scholar 

  23. Drider D, Rebuffat S (2011) Prokaryotic antimicrobial peptides: from genes to applications. Springer-Verlag, New York. Springer USA, 451 pp

  24. Besse A, Peduzzi J, Rebuffat S, Carré-Mlouka A (2015) Antimicrobial peptides and proteins in the face of extremes: lessons from archaeocins. Biochimie. 118:344–355. https://doi.org/10.1016/j.biochi.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  25. Klaenhammer TR (1988) Bacteriocins of lactic acid bacteria. Biochimie 70:337–349. https://doi.org/10.1016/0300-9084(88)90206-4

    Article  CAS  PubMed  Google Scholar 

  26. Parada JL, Caron CR, Medeiros ABP, Soccol CR (2007) Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz Arch Biol Technol 50:512–542. https://doi.org/10.1590/S1516-89132007000300018

    Article  Google Scholar 

  27. Line JE, Svetoch EA, Eruslanov BV, Perelygin VV, Mitsevich EV, Mitsevich IP, Levchuk VP, Svetoch OE, Seal BS, Siragusa GR, Stern NJ (2008) Isolation and purification of enterocin E-760 with broad antimicrobial activity against Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother 52:1094–1100. https://doi.org/10.1128/AAC.01569-06

    Article  CAS  PubMed  Google Scholar 

  28. Nazef L, Belguesmia Y, Tani A, Prévost H, Drider D (2008) Identification of lactic acid bacteria from poultry feces: evidence on anti-campylobacter and anti-listeria activities. Poult Sci 87:329–334. https://doi.org/10.3382/ps.2007-00282

    Article  CAS  PubMed  Google Scholar 

  29. Ben Lagha A, Haas B, Gottschalk M, Grenier D (2017) Antimicrobial potential of bacteriocins in poultry and swine production. Vet Res 48(1):22. https://doi.org/10.1186/s13567-017-0425-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McKenzie VJ, Kueneman JG, Harris RN (2018) Probiotics as a tool for disease mitigation in wildlife: insights from food production and medicine. Ann N Y Acad Sci 1429:18–30. https://doi.org/10.1111/nyas.13617

    Article  PubMed  Google Scholar 

  31. Schillinger U, Lücke FK (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55:1901–1906

    Article  CAS  Google Scholar 

  32. Furet J-P, Quénée P, Tailliez P (2004) Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. Int J Food Microbiol 97:197–207. https://doi.org/10.1016/j.ijfoodmicro.2004.04.020

    Article  CAS  PubMed  Google Scholar 

  33. Kabadjova P, Dousset X, Cam VL, Prevost H (2002) Differentiation of closely related Carnobacterium food isolates based on 16S-23S ribosomal DNA intergenic spacer region polymorphism. Appl Environ Microbiol 68:5358–5366. https://doi.org/10.1128/AEM.68.11.5358-5366.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rossetti L, Giraffa G (2005) Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases. J Microbiol Methods 63:135–144. https://doi.org/10.1016/j.mimet.2005.03.001

    Article  CAS  PubMed  Google Scholar 

  35. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214. https://doi.org/10.1093/nar/gkt1226

    Article  CAS  PubMed  Google Scholar 

  36. Vieco-Saiz N, Belguesmia Y, Vachée A, le Maréchal C, Salvat G, Drider D (2020) Antibiotic resistance, genome analysis and further safe traits of Clostridium perfringens ICVB082; a strain capable of producing an inhibitory compound directed only against a closely related pathogenic strain. Anaerobe. 62:102177. https://doi.org/10.1016/j.anaerobe.2020.102177

    Article  CAS  PubMed  Google Scholar 

  37. Dubreuil JD (2017) Enterotoxigenic Escherichia coli and probiotics in swine: what the bleep do we know? Biosci Microb Food Health 36:75–90. https://doi.org/10.12938/bmfh.16-030

    Article  CAS  Google Scholar 

  38. Baker AA, Davis E, Rehberger T, Rosener D (2010) Prevalence and diversity of toxigenic Clostridium perfringens and Clostridium difficile among swine herds in the Midwest. Appl Environ Microbiol 76:2961–2967. https://doi.org/10.1128/AEM.02459-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McKenzie VJ, Song SJ, Delsuc F et al (2017) The effects of captivity on the mammalian gut microbiome. Integr Comp Biol 57:690–704. https://doi.org/10.1093/icb/icx090

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lebreton F, Willems RJL, Gilmore MS (2014) Enterococcus diversity, origins in nature, and gut colonization. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston available at: https://www.ncbi.nlm.nih.gov/books/NBK190427/

    Google Scholar 

  41. Venema K (2015) Probiotics and prebiotics: current research and future trends. Caister Academic Press, 521pp

  42. Gordo I, Demengeot J, Xavier K (2014) Escherichia coli adaptation to the gut environment: a constant fight for survival. Future Microbiol 9:1235–1238. https://doi.org/10.2217/fmb.14.86

    Article  CAS  PubMed  Google Scholar 

  43. Gordon DM, O’Brien CL (2006) Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology 152:3239–3244. https://doi.org/10.1099/mic.0.28690-0

    Article  CAS  PubMed  Google Scholar 

  44. Gillor O, Kirkup BC, Riley MA (2004) Colicins and microcins: the next generation antimicrobials. In: Advances in Applied Microbiology. Academic Press, pp 129–146

  45. Thamacharoensuk T, Thongchul N, Taweechotipatr M et al (2013) Screening and characterization of lactic acid bacteria from animal faeces for probiotic properties. Thai Vet Med 1(43):541–551

    Google Scholar 

  46. Ben Belgacem Z, Dousset X, Prévost H, Manai M (2009) Polyphasic taxonomic studies of lactic acid bacteria associated with Tunisian fermented meat based on the heterogeneity of the 16S-23S rRNA gene intergenic spacer region. Arch Microbiol 191:711–720. https://doi.org/10.1007/s00203-009-0499-2

    Article  CAS  PubMed  Google Scholar 

  47. Jensen MA, Webster JA, Straus N (1993) Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol 59:945–952

    Article  CAS  Google Scholar 

  48. Chenoll E, Macián MC, Aznar R (2003) Identification of Carnobacterium, Lactobacillus, Leuconostoc and Pediococcus by rDNA-based techniques. Syst Appl Microbiol 26:546–556. https://doi.org/10.1078/072320203770865855

    Article  CAS  PubMed  Google Scholar 

  49. Fhoula I, Najjari A, Turki Y, Jaballah S, Boudabous A, Ouzari H (2013) Diversity and antimicrobial properties of lactic acid bacteria isolated from rhizosphere of olive trees and desert truffles of Tunisia. Biomed Res Int 2013:405708–405714. https://doi.org/10.1155/2013/405708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Al Atya AK, Drider-Hadiouche K, Ravallec R et al (2015) Probiotic potential of Enterococcus faecalis strains isolated from meconium. Front Microbiol 6:227. https://doi.org/10.3389/fmicb.2015.00227

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gaggìa F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141(Suppl 1):S15–S28. https://doi.org/10.1016/j.ijfoodmicro.2010.02.031

    Article  PubMed  Google Scholar 

  52. Caly DL, Chevalier M, Flahaut C, Cudennec B, al Atya AK, Chataigné G, D'Inca R, Auclair E, Drider D (2017) The safe enterocin DD14 is a leaderless two-peptide bacteriocin with anti-Clostridium perfringens activity. Int J Antimicrob Agents 49:282–289. https://doi.org/10.1016/j.ijantimicag.2016.11.016

    Article  CAS  PubMed  Google Scholar 

  53. Al Atya AK, Belguesmia Y, Chataigne G et al (2016) Anti-MRSA activities of enterocins DD28 and DD93 and evidences on their role in the inhibition of biofilm formation. Front Microbiol 7:817. https://doi.org/10.3389/fmicb.2016.00817

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pérez-Ramos A, Mohedano ML, López P et al (2017) In situ β-glucan fortification of cereal-based matrices by Pediococcus parvulus 2.6: technological aspects and prebiotic potential. Int J Mol Sci 18(7):E1588. https://doi.org/10.3390/ijms18071588

    Article  CAS  PubMed  Google Scholar 

  55. Borges S, Teixeira P (2014) Pediococcus pentosaceus SB83 as a potential probiotic incorporated in a liquid system for vaginal delivery. Benefic Microbes 5:421–426. https://doi.org/10.3920/BM2013.0084

    Article  CAS  Google Scholar 

  56. Shukla R, Goyal A (2014) Probiotic potential of Pediococcus pentosaceus CRAG3: a new isolate from fermented cucumber. Probiotics Antimicrob Proteins 6:11–21. https://doi.org/10.1007/s12602-013-9149-8

    Article  CAS  PubMed  Google Scholar 

  57. Damodharan K, Lee YS, Palaniyandi SA, Yang SH, Suh JW (2015) Preliminary probiotic and technological characterization of Pediococcus pentosaceus strain KID7 and in vivo assessment of its cholesterol-lowering activity. Front Microbiol 6:768. https://doi.org/10.3389/fmicb.2015.00768

    Article  PubMed  PubMed Central  Google Scholar 

  58. Casey PG, Gardiner GE, Casey G, Bradshaw B, Lawlor PG, Lynch PB, Leonard FC, Stanton C, Ross RP, Fitzgerald GF, Hill C (2007) A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 73:1858–1863. https://doi.org/10.1128/AEM.01840-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fredericq P (1957) Colicins. Annu Rev Microbiol 11:7–22

    Article  CAS  Google Scholar 

  60. Barnes B, Sidhu H, Gordon DM (2007) Host gastro-intestinal dynamics and the frequency of colicin production by Escherichia coli. Microbiology 153:2823–2827. https://doi.org/10.1099/mic.0.2007/007120-0

    Article  CAS  PubMed  Google Scholar 

  61. Balla E, Dicks LMT, Du Toit M, Van Der Merwe MJ, Holzapfel WH (2000) Characterization and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecalis BFE 1071. Appl Environ Microbiol 66:1298–1304. https://doi.org/10.1128/AEM.66.4.1298-1304.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Franz C, Van Belkum MJ, Holzapfel WH, Abriouel H, Galvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310. https://doi.org/10.1111/j.1574-6976.2007.00064.x

    Article  CAS  PubMed  Google Scholar 

  63. Umu ÖC, Bäuerl C, Oostindjer M, Pope PB, Hernández PE, Pérez-Martínez G, Diep DB (2016) The potential of class II bacteriocins to modify gut microbiota to improve host health. PLoS One 11(10):e0164036. https://doi.org/10.1371/journal.pone.0164036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Araújo TF, Ferreira CL d LF (2013) The genus Enterococcus as probiotic: safety concerns. Braz Arch of Biol Technol 56:457–466. https://doi.org/10.1590/S1516-89132013000300014

    Article  Google Scholar 

  65. Gilmore MS, Segarra RA, Booth MC (1990) An HlyB-type function is required for expression of the Enterococcus faecalis hemolysin/bacteriocin. Infect Immun 58:3914–3923

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mégane Eveno was a recipient of PhD from Lille University (France) and Laval University (Québec, Canada) through METABIOLAC Industrial Research Chair and CRSNG Industrial Research Chair awarded for Prof. Fliss and Prof. L. Bazinet. Research at Lille University was supported by CPER/FEDER Alibiotech programme (2016-2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamel Drider.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eveno, M., Salouhi, A., Belguesmia, Y. et al. Biodiversity and Phylogenetic Relationships of Novel Bacteriocinogenic Strains Isolated from Animal’s Droppings at the Zoological Garden of Lille, France. Probiotics & Antimicro. Prot. 13, 218–228 (2021). https://doi.org/10.1007/s12602-020-09657-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09657-4

Keywords