Abstract
This study aimed at exploring droppings of animals living in captivity in the zoological garden (Zoo) of Lille (France), as novel sources of bacteriocinogenic strains. A collection of 295 bacterial isolates was constituted from droppings of capybara, alpaca, muntjac, zebra, tapir, rhinoceros, binturong, armadillo, saki monkey and cockatoo. Of 295 isolates, 51 exhibited antagonism against a panel of pathogenic target bacteria like Escherichia coli MC4100, Clostridium perfringens DSM 756 and Salmonella enterica subsp. enterica Newport ATCC6962. Remarkably, within this collection, only 2 Gram-negative bacilli exhibited activity against E. coli MC4100 strain used as target organism. Then, the 16S rDNA sequencing revealed these thereafter cited species, Pediococcus pentosaceus, Weissella cibaria, E. coli, Lactobacillus reuteri, Enterococcus hirae and Enterococcus faecalis. Characterization of this antagonism has revealed 11 strains able producing extracellular protease-sensitive inhibitory compounds. These strains included E. coli ICVB442 and ICVB443, Ent. faecalis ICVB472, ICVB474, ICVB477 ICVB479, ICVB481, ICVB497 and ICVB501 and Ped. pentosaceus ICVB491 and ICVB492. The genomes of the 5 most promising bacteriocinogenic strains were sequenced and analysed with Bagel4 software. Afterwards, this bioinformatics analysis permitted to locate genes encoding bacteriocins like colicin Y (E. coli), enterocin 1071A, enterocin 107 B (Ent. faecalis) and penocin A (Ped. pentosaceus), associating the above-mentioned antibacterial activity of proteinaceous nature to possible production of bacteriocins. All these results enabled us to select different bacteriocinogenic strains for a further characterization in terms of beneficial traits.




Similar content being viewed by others
References
De Angelis M, Siragusa S, Berloco M et al (2006) Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding. Res Microbiol 157:792–801. https://doi.org/10.1016/j.resmic.2006.05.003
Fouhse JM, Zijlstra RT, Willing BP (2016) The role of gut microbiota in the health and disease of pigs. Anim Front 6:30–36. https://doi.org/10.2527/af.2016-0031
Tsuchida S, Ushida K (2015) Characterization of intestinal bacterial communities of western lowland gorillas (Gorilla gorilla gorilla), central chimpanzees (Pan troglodytes troglodytes), and a forest elephant (Loxodonta africana cyclotis) living in Moukalaba-Doudou National Park in Gabon. Tropics 23:175–183. https://doi.org/10.3759/tropics.23.175
Endo A, Futagawa-Endo Y, Dicks LMT (2010) Diversity of Lactobacillus and Bifidobacterium in feces of herbivores, omnivores and carnivores. Anaerobe 16:590–596. https://doi.org/10.1016/j.anaerobe.2010.10.005
Aarestrup FM (2015) The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward. Philos Trans R Soc Lond Ser B Biol Sci 370(1670):20140085. https://doi.org/10.1098/rstb.2014.0085
Yang F, Hou C, Zeng X, Qiao S (2015) The use of lactic acid bacteria as a probiotic in swine diets. Pathogens 4:34–45. https://doi.org/10.3390/pathogens4010034
Turner JL, Dritz SS, Minton JE (2001) Alternatives to conventional antimicrobials in swine diets. PAS 17:217–226. https://doi.org/10.15232/S1080-7446(15)31633-8
Reavill D (2014) Pathology of the exotic companion mammal gastrointestinal system. Vet Clin North Am Exot Anim Pract 17:145–164. https://doi.org/10.1016/j.cvex.2014.01.002
Leotta GA, Deza N, Origlia J, Toma C, Chinen I, Miliwebsky E, Iyoda S, Sosa-Estani S, Rivas M (2006) Detection and characterization of shiga toxin-producing Escherichia coli in captive non-domestic mammals. Vet Microbiol 118:151–157. https://doi.org/10.1016/j.vetmic.2006.07.006
Stirling J, Griffith M, Blair I, Cormican M, Dooley JSG, Goldsmith CE, Glover SG, Loughrey A, Lowery CJ, Matsuda M, McClurg R, McCorry K, McDowell D, McMahon A, Cherie Millar B, Nagano Y, Rao JR, Rooney PJ, Smyth M, Snelling WJ, Xu J, Moore JE (2008) Prevalence of gastrointestinal bacterial pathogens in a population of zoo animals. Zoonoses Public Health 55:166–172. https://doi.org/10.1111/j.1863-2378.2007.01099.x
Dobiasova H, Dolejska M, Jamborova I, Brhelova E, Blazkova L, Papousek I, Kozlova M, Klimes J, Cizek A, Literak I (2013) Extended spectrum beta-lactamase and fluoroquinolone resistance genes and plasmids among Escherichia coli isolates from zoo animals. Czech Republic FEMS Microbiol Ecol 85:604–611. https://doi.org/10.1111/1574-6941.12149
Kenny M, Smidt H, Mengheri E, Miller B (2011) Probiotics – do they have a role in the pig industry? Animal 5:462–470. https://doi.org/10.1017/S175173111000193X
Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, Drider D (2019) Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front Microbiol 10:57. https://doi.org/10.3389/fmicb.2019.00057
Kechaou N, Chain F, Gratadoux JJ, Blugeon S, Bertho N, Chevalier C, le Goffic R, Courau S, Molimard P, Chatel JM, Langella P, Bermúdez-Humarán LG (2013) Identification of one novel candidate probiotic Lactobacillus plantarum strain active against influenza virus infection in mice by a large-scale screening. Appl Environ Microbiol 79:1491–1499. https://doi.org/10.1128/AEM.03075-12
Hu Y, Dun Y, Li S et al (2015) Dietary Enterococcus faecalis LAB31 improves growth performance, reduces diarrhea, and increases fecal Lactobacillus number of weaned piglets. PLoS One 10(1):e0116635. https://doi.org/10.1371/journal.pone.0116635
Lähteinen T, Rinttilä T, Koort JMK, Kant R, Levonen K, Jakava-Viljanen M, Björkroth J, Palva A (2015) Effect of a multispecies Lactobacillus formulation as a feeding supplement on the performance and immune function of piglets. Livest Sci 180:164–171. https://doi.org/10.1016/j.livsci.2015.07.016
Burel C (2012) Alternatives to antimicrobial growth promoters (AGPs) in animal feed. In: Fink-Gremmels J (ed) Animal Feed Contamination: effects on livestock and food safety. Woodhead Publishing Ltd., Cambridge, pp 432–448
Naghmouchi K, Le Lay C, Baah J, Drider D (2012) Antibiotic and antimicrobial peptide combinations: synergistic inhibition of Pseudomonas fluorescens and antibiotic-resistant variants. Res Microbiol 163:101–108. https://doi.org/10.1016/j.resmic.2011.11.002
Cotter PD, Ross RP, Hill C (2013) Bacteriocins - a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105. https://doi.org/10.1038/nrmicro2937
Cavera VL, Arthur TD, Kashtanov D, Chikindas ML (2015) Bacteriocins and their position in the next wave of conventional antibiotics. Int J Antimicrob Agents 46:494–501. https://doi.org/10.1016/j.ijantimicag.2015.07.011
Drider D, Bendali F, Naghmouchi K, Chikindas ML (2016) Bacteriocins: not only antibacterial agents. Probiotics Antimicrob Proteins 8:177–182. https://doi.org/10.1007/s12602-016-9223-0
Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LD (2018) Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 49:23–28. https://doi.org/10.1016/j.copbio.2017.07.011
Drider D, Rebuffat S (2011) Prokaryotic antimicrobial peptides: from genes to applications. Springer-Verlag, New York. Springer USA, 451 pp
Besse A, Peduzzi J, Rebuffat S, Carré-Mlouka A (2015) Antimicrobial peptides and proteins in the face of extremes: lessons from archaeocins. Biochimie. 118:344–355. https://doi.org/10.1016/j.biochi.2015.06.004
Klaenhammer TR (1988) Bacteriocins of lactic acid bacteria. Biochimie 70:337–349. https://doi.org/10.1016/0300-9084(88)90206-4
Parada JL, Caron CR, Medeiros ABP, Soccol CR (2007) Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz Arch Biol Technol 50:512–542. https://doi.org/10.1590/S1516-89132007000300018
Line JE, Svetoch EA, Eruslanov BV, Perelygin VV, Mitsevich EV, Mitsevich IP, Levchuk VP, Svetoch OE, Seal BS, Siragusa GR, Stern NJ (2008) Isolation and purification of enterocin E-760 with broad antimicrobial activity against Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother 52:1094–1100. https://doi.org/10.1128/AAC.01569-06
Nazef L, Belguesmia Y, Tani A, Prévost H, Drider D (2008) Identification of lactic acid bacteria from poultry feces: evidence on anti-campylobacter and anti-listeria activities. Poult Sci 87:329–334. https://doi.org/10.3382/ps.2007-00282
Ben Lagha A, Haas B, Gottschalk M, Grenier D (2017) Antimicrobial potential of bacteriocins in poultry and swine production. Vet Res 48(1):22. https://doi.org/10.1186/s13567-017-0425-6
McKenzie VJ, Kueneman JG, Harris RN (2018) Probiotics as a tool for disease mitigation in wildlife: insights from food production and medicine. Ann N Y Acad Sci 1429:18–30. https://doi.org/10.1111/nyas.13617
Schillinger U, Lücke FK (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55:1901–1906
Furet J-P, Quénée P, Tailliez P (2004) Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. Int J Food Microbiol 97:197–207. https://doi.org/10.1016/j.ijfoodmicro.2004.04.020
Kabadjova P, Dousset X, Cam VL, Prevost H (2002) Differentiation of closely related Carnobacterium food isolates based on 16S-23S ribosomal DNA intergenic spacer region polymorphism. Appl Environ Microbiol 68:5358–5366. https://doi.org/10.1128/AEM.68.11.5358-5366.2002
Rossetti L, Giraffa G (2005) Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases. J Microbiol Methods 63:135–144. https://doi.org/10.1016/j.mimet.2005.03.001
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214. https://doi.org/10.1093/nar/gkt1226
Vieco-Saiz N, Belguesmia Y, Vachée A, le Maréchal C, Salvat G, Drider D (2020) Antibiotic resistance, genome analysis and further safe traits of Clostridium perfringens ICVB082; a strain capable of producing an inhibitory compound directed only against a closely related pathogenic strain. Anaerobe. 62:102177. https://doi.org/10.1016/j.anaerobe.2020.102177
Dubreuil JD (2017) Enterotoxigenic Escherichia coli and probiotics in swine: what the bleep do we know? Biosci Microb Food Health 36:75–90. https://doi.org/10.12938/bmfh.16-030
Baker AA, Davis E, Rehberger T, Rosener D (2010) Prevalence and diversity of toxigenic Clostridium perfringens and Clostridium difficile among swine herds in the Midwest. Appl Environ Microbiol 76:2961–2967. https://doi.org/10.1128/AEM.02459-09
McKenzie VJ, Song SJ, Delsuc F et al (2017) The effects of captivity on the mammalian gut microbiome. Integr Comp Biol 57:690–704. https://doi.org/10.1093/icb/icx090
Lebreton F, Willems RJL, Gilmore MS (2014) Enterococcus diversity, origins in nature, and gut colonization. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston available at: https://www.ncbi.nlm.nih.gov/books/NBK190427/
Venema K (2015) Probiotics and prebiotics: current research and future trends. Caister Academic Press, 521pp
Gordo I, Demengeot J, Xavier K (2014) Escherichia coli adaptation to the gut environment: a constant fight for survival. Future Microbiol 9:1235–1238. https://doi.org/10.2217/fmb.14.86
Gordon DM, O’Brien CL (2006) Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology 152:3239–3244. https://doi.org/10.1099/mic.0.28690-0
Gillor O, Kirkup BC, Riley MA (2004) Colicins and microcins: the next generation antimicrobials. In: Advances in Applied Microbiology. Academic Press, pp 129–146
Thamacharoensuk T, Thongchul N, Taweechotipatr M et al (2013) Screening and characterization of lactic acid bacteria from animal faeces for probiotic properties. Thai Vet Med 1(43):541–551
Ben Belgacem Z, Dousset X, Prévost H, Manai M (2009) Polyphasic taxonomic studies of lactic acid bacteria associated with Tunisian fermented meat based on the heterogeneity of the 16S-23S rRNA gene intergenic spacer region. Arch Microbiol 191:711–720. https://doi.org/10.1007/s00203-009-0499-2
Jensen MA, Webster JA, Straus N (1993) Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol 59:945–952
Chenoll E, Macián MC, Aznar R (2003) Identification of Carnobacterium, Lactobacillus, Leuconostoc and Pediococcus by rDNA-based techniques. Syst Appl Microbiol 26:546–556. https://doi.org/10.1078/072320203770865855
Fhoula I, Najjari A, Turki Y, Jaballah S, Boudabous A, Ouzari H (2013) Diversity and antimicrobial properties of lactic acid bacteria isolated from rhizosphere of olive trees and desert truffles of Tunisia. Biomed Res Int 2013:405708–405714. https://doi.org/10.1155/2013/405708
Al Atya AK, Drider-Hadiouche K, Ravallec R et al (2015) Probiotic potential of Enterococcus faecalis strains isolated from meconium. Front Microbiol 6:227. https://doi.org/10.3389/fmicb.2015.00227
Gaggìa F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141(Suppl 1):S15–S28. https://doi.org/10.1016/j.ijfoodmicro.2010.02.031
Caly DL, Chevalier M, Flahaut C, Cudennec B, al Atya AK, Chataigné G, D'Inca R, Auclair E, Drider D (2017) The safe enterocin DD14 is a leaderless two-peptide bacteriocin with anti-Clostridium perfringens activity. Int J Antimicrob Agents 49:282–289. https://doi.org/10.1016/j.ijantimicag.2016.11.016
Al Atya AK, Belguesmia Y, Chataigne G et al (2016) Anti-MRSA activities of enterocins DD28 and DD93 and evidences on their role in the inhibition of biofilm formation. Front Microbiol 7:817. https://doi.org/10.3389/fmicb.2016.00817
Pérez-Ramos A, Mohedano ML, López P et al (2017) In situ β-glucan fortification of cereal-based matrices by Pediococcus parvulus 2.6: technological aspects and prebiotic potential. Int J Mol Sci 18(7):E1588. https://doi.org/10.3390/ijms18071588
Borges S, Teixeira P (2014) Pediococcus pentosaceus SB83 as a potential probiotic incorporated in a liquid system for vaginal delivery. Benefic Microbes 5:421–426. https://doi.org/10.3920/BM2013.0084
Shukla R, Goyal A (2014) Probiotic potential of Pediococcus pentosaceus CRAG3: a new isolate from fermented cucumber. Probiotics Antimicrob Proteins 6:11–21. https://doi.org/10.1007/s12602-013-9149-8
Damodharan K, Lee YS, Palaniyandi SA, Yang SH, Suh JW (2015) Preliminary probiotic and technological characterization of Pediococcus pentosaceus strain KID7 and in vivo assessment of its cholesterol-lowering activity. Front Microbiol 6:768. https://doi.org/10.3389/fmicb.2015.00768
Casey PG, Gardiner GE, Casey G, Bradshaw B, Lawlor PG, Lynch PB, Leonard FC, Stanton C, Ross RP, Fitzgerald GF, Hill C (2007) A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 73:1858–1863. https://doi.org/10.1128/AEM.01840-06
Fredericq P (1957) Colicins. Annu Rev Microbiol 11:7–22
Barnes B, Sidhu H, Gordon DM (2007) Host gastro-intestinal dynamics and the frequency of colicin production by Escherichia coli. Microbiology 153:2823–2827. https://doi.org/10.1099/mic.0.2007/007120-0
Balla E, Dicks LMT, Du Toit M, Van Der Merwe MJ, Holzapfel WH (2000) Characterization and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecalis BFE 1071. Appl Environ Microbiol 66:1298–1304. https://doi.org/10.1128/AEM.66.4.1298-1304.2000
Franz C, Van Belkum MJ, Holzapfel WH, Abriouel H, Galvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310. https://doi.org/10.1111/j.1574-6976.2007.00064.x
Umu ÖC, Bäuerl C, Oostindjer M, Pope PB, Hernández PE, Pérez-Martínez G, Diep DB (2016) The potential of class II bacteriocins to modify gut microbiota to improve host health. PLoS One 11(10):e0164036. https://doi.org/10.1371/journal.pone.0164036
Araújo TF, Ferreira CL d LF (2013) The genus Enterococcus as probiotic: safety concerns. Braz Arch of Biol Technol 56:457–466. https://doi.org/10.1590/S1516-89132013000300014
Gilmore MS, Segarra RA, Booth MC (1990) An HlyB-type function is required for expression of the Enterococcus faecalis hemolysin/bacteriocin. Infect Immun 58:3914–3923
Acknowledgements
Mégane Eveno was a recipient of PhD from Lille University (France) and Laval University (Québec, Canada) through METABIOLAC Industrial Research Chair and CRSNG Industrial Research Chair awarded for Prof. Fliss and Prof. L. Bazinet. Research at Lille University was supported by CPER/FEDER Alibiotech programme (2016-2021).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Eveno, M., Salouhi, A., Belguesmia, Y. et al. Biodiversity and Phylogenetic Relationships of Novel Bacteriocinogenic Strains Isolated from Animal’s Droppings at the Zoological Garden of Lille, France. Probiotics & Antimicro. Prot. 13, 218–228 (2021). https://doi.org/10.1007/s12602-020-09657-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12602-020-09657-4


