Potential Probiotics Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 Co-Aggregate with Clinical Isolates of Proteus mirabilis and Prevent Biofilm Formation

Abstract

A urinary tract infection (UTI) is a multi-factorial disease including cystitis, pyelonephritis, and pyelitis. After Escherichia coli, Proteus mirabilis is the most common UTI-associated opportunistic pathogen. Antibiotic resistance of bacteria and infection recurrence can be connected to biofilm formation by P. mirabilis. In this study, human and sheep isolates of P. mirabilis were investigated for antibiotic sensitivity using an antibiotic disk test. Co-aggregation of the tested potential probiotic bacilli, Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933, with the isolated pathogen was also evaluated. Then, the anti-biofilm activity of naturally derived metabolites, such as subtilin and subtilosin, in the bacilli-free supernatants was assessed against biofilms of P. mirabilis isolates. The isolated pathogens were sensitive to 30 μg of amikacin and 5 μg of ciprofloxacin but resistant to other tested antibiotics. After 24 h, auto-aggregation of B. amyloliquefaciens B-1895 was at 89.5% and higher than auto-aggregation of B. subtilis KATMIRA1933 (59.5%). B. amyloliquefaciens B-1895 strongly co-aggregated with P. mirabilis isolates from human UTIs. Cell-free supernatants of B. amyloliquefaciens B-1895 and B. subtilis KATMIRA1933 showed higher antimicrobial activity against biofilms of P. mirabilis isolated from humans as compared with biofilms of sheep isolates. According to our knowledge, this is the first report evaluating the anti-biofilm activity of probiotic spore-forming bacilli against clinical and animal UTI isolates of P. mirabilis. Further studies are recommended to investigate the anti-biofilm activity and the mode of action for the antimicrobial substances produced by these bacilli, subtilosin and subtilin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Chen CY, Chen YH, Lu PL, Lin WR, Chen TC, Lin CY (2012) Proteus mirabilis urinary tract infection and bacteremia: risk factors, clinical presentation, and outcomes. J Microbiol Immunol Infect 45(3):228–236. https://doi.org/10.1016/j.jmii.2011.11.007

    CAS  Article  Google Scholar 

  2. 2.

    Coker C, Poore CA, Li X, Mobley HLT (2000) Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect 2(12):1497–1505. https://doi.org/10.1016/S1286-4579(00)01304-6

    CAS  Article  Google Scholar 

  3. 3.

    Vandepitte J, Verhaegen J, Engbaek K, Rohner P, Piot P, Heuck C, Heuck C (2003) Basic laboratory procedures in clinical bacteriology: World Health Organization https://apps.who.int/iris/handle/10665/42696.

  4. 4.

    Fusco A, Coretti L, Savio V, Buommino E, Lembo F, Donnarumma G (2017) Biofilm formation and immunomodulatory activity of Proteus mirabilis clinically isolated strains. Int J Mol Sci 18(2):414. https://doi.org/10.3390/ijms18020414

    CAS  Article  Google Scholar 

  5. 5.

    Himpsl SD, Lockatell CV, Hebel JR, Johnson DE, Mobley HL (2008) Identification of virulence determinants in uropathogenic Proteus mirabilis using signature-tagged mutagenesis. J Med Microbiol 57(9):1068–1078. https://doi.org/10.1099/jmm.0.2008/002071-0

    CAS  Article  Google Scholar 

  6. 6.

    Janda JM, Abbott SL (1998) The enterobacteria. Lippincott-Raven, Philadelphia, PA

    Google Scholar 

  7. 7.

    Endimiani A, Luzzaro F, Brigante G, Perilli M, Lombardi G, Amicosante G, Rossolini GM, Toniolo A (2005) Proteus mirabilis bloodstream infections: risk factors and treatment outcome related to the expression of extended-spectrum β-lactamases. Antimicrob Agents Chemother 49(7):2598–2605. https://doi.org/10.1128/AAC.49.7.2598-2605.2005

    CAS  Article  Google Scholar 

  8. 8.

    Jacobsen SM, Shirtliff ME (2011) Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence 2(5):460–465. https://doi.org/10.4161/viru.2.5.17783

    Article  Google Scholar 

  9. 9.

    Wasfi R, Abd El-Rahman OA, Mansour LE, Hanora AS, Hashem AM, Ashour MS (2012) Antimicrobial activities against biofilm formed by Proteus mirabilis isolates from wound and urinary tract infections. Indian J Med Microbiol 30(1):76–80. https://doi.org/10.4103/0255-0857.93044

    CAS  Article  Google Scholar 

  10. 10.

    Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33(8):1387–1392. https://doi.org/10.1086/322972

    CAS  Article  Google Scholar 

  11. 11.

    Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73(2):310–347. https://doi.org/10.1128/MMBR.00041-08

    CAS  Article  Google Scholar 

  12. 12.

    Wu H, Moser C, Wang HZ, Høiby N, Song ZJ (2015) Strategies for combating bacterial biofilm infections. Int J Oral Sci 7(1):1–7. https://doi.org/10.1038/ijos.2014.65

    CAS  Article  Google Scholar 

  13. 13.

    Whitfield H, Choong S (2000) Biofilms and their role in infections in urology. BJU Int 86(8):935–941. https://doi.org/10.1046/j.1464-410x.2000.00949.x

    Article  Google Scholar 

  14. 14.

    Köves B, Wullt B (2016) The roles of the host and the pathogens in urinary tract infections. Eur Urol Suppl 15(4):88–94. https://doi.org/10.1016/j.eursup.2016.04.005

    Article  Google Scholar 

  15. 15.

    Nielubowicz GR (2010) Identification of the outer membrane immunoproteome of the uropathogen Proteus mirabilis: insights into virulence and potential vaccine candidates. Ph.D. Thesis, Michigan University, Ann Arbor, MI, USA. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/75895/gmontero_1.pdf?sequence=1&isAllowed=y.

  16. 16.

    Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292(2):107–113. https://doi.org/10.1078/1438-4221-00196

    CAS  Article  Google Scholar 

  17. 17.

    Braga PC, dal Sasso M, Sala MT (2000) Sub-MIC concentrations of cefodizime interfere with various factors affecting bacterial virulence. J Antimicrob Chemother 45(1):15–25. https://doi.org/10.1093/jac/45.1.15

    CAS  Article  Google Scholar 

  18. 18.

    Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332. https://doi.org/10.1016/j.ijantimicag.2009.12.011

    CAS  Article  Google Scholar 

  19. 19.

    Sutyak K, Wirawan R, Aroutcheva A, Chikindas M (2008) Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J Appl Microbiol 104(4):1067–1074. https://doi.org/10.1111/j.1365-2672.2007.03626.x

    CAS  Article  Google Scholar 

  20. 20.

    Algburi A, Volski A, Cugini C, Walsh EM, Chistyakov VA, Mazanko MS, Bren AB, Dicks LMT, Chikindas ML (2016) Safety properties and probiotic potential of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895. Adv Microbiol 6(6):432–452. https://doi.org/10.4236/aim.2016.66043

    CAS  Article  Google Scholar 

  21. 21.

    Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113(1):1–15. https://doi.org/10.1016/j.ijfoodmicro.2006.07.008

    Article  Google Scholar 

  22. 22.

    Sutyak KE, Anderson RA, Dover SE, Feathergill KA, Aroutcheva AA, Faro S, Chikindas ML (2008) Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infect Dis Obstet Gynecol 2008:540758. https://doi.org/10.1155/2008/540758

    CAS  Article  Google Scholar 

  23. 23.

    Chistyakov V, Melnikov V, Chikindas ML, Khutsishvili M, Chagelishvili A, Bren A, Kostina N, Cavera V, Elisashvili V (2015) Poultry-beneficial solid-state Bacillus amyloliquefaciens B-1895 fermented soybean formulation. Biosci Microbiota Food Health 34(1):25–28. https://doi.org/10.12938/bmfh.2014-012

    CAS  Article  Google Scholar 

  24. 24.

    Baker FJ, Breach MR (1971) Handbook of bacteriological technique. Butterworth & Co Publishers Ltd., London, pp 332–335

    Google Scholar 

  25. 25.

    Clinical and Laboratory Standards Institute (2010) Performance standards for antimicrobial susceptibility testing; nineteenth informational supplement. CLSI document M100-S19, Wayne, PA

  26. 26.

    Cisar JO, Kolenbrander PE, McIntire FC (1979) Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Infect Immun 24(3):742–752

    CAS  Article  Google Scholar 

  27. 27.

    Ledder RG, Timperley AS, Friswell MK, Macfarlane S, McBain AJ (2008) Coaggregation between and among human intestinal and oral bacteria. FEMS Microbiol Ecol 66(3):630–636. https://doi.org/10.1111/j.1574-6941.2008.00525.x

    CAS  Article  Google Scholar 

  28. 28.

    Sutyak K, Prichard MN, Khaykin A, Sinko PJ, Chikindas ML (2012) The natural antimicrobial peptide subtilosin acts synergistically with glycerol monolaurate, lauric arginate and ε-poly-L-lysine against bacterial vaginosis-associated pathogens but not human lactobacilli. Antimicrob Agents Chemother 56(4):1756–1761. https://doi.org/10.1128/AAC.05861-11

    CAS  Article  Google Scholar 

  29. 29.

    Borucki MK, Peppin JD, White D, Loge F, Call DR (2003) Variation in biofilm formation among strains of Listeria monocytogenes. Appl Environ Microbiol 69(12):7336–7342. https://doi.org/10.1128/AEM.69.12.7336-7342.2003

    CAS  Article  Google Scholar 

  30. 30.

    Padaruth SK, Biranjia-Hurdoyal SD (2014) Hygiene practices and faecal contamination of the hands of children attending primary school in Mauritius. Int Health 7(4):280–284. https://doi.org/10.1093/inthealth/ihu080

    Article  Google Scholar 

  31. 31.

    Drzewiecka D (2016) Significance and roles of Proteus spp. bacteria in natural environments. Microb Ecol 72(4):741–758. https://doi.org/10.1007/s00248-015-0720-6

    CAS  Article  Google Scholar 

  32. 32.

    Sarwar M (2015) Insect vectors involving in mechanical transmission of human pathogens for serious diseases. Int J Bioinform Biomed Eng 1(3):300–306 http://www.aiscience.org/journal/ijbbe

    CAS  Google Scholar 

  33. 33.

    Onuoha SC, Fatokun K (2014) Prevalence and antimicrobial susceptibility pattern of urinary tract infection (UTI) among pregnant women in Afikpo, Ebonyi, Nigeria. American J Life Sci 2(2):46–52. https://doi.org/10.11648/j.ajls.20140202.12

    Article  Google Scholar 

  34. 34.

    Rath S, Padhy RN (2015) Surveillance of acute community acquired urinary tract bacterial infections. J Acute Dis 4(3):186–195. https://doi.org/10.1016/j.joad.2015.06.001

    Article  Google Scholar 

  35. 35.

    Pal N, Hooja S, Sharma R, Maheshwari R (2016) Phenotypic detection and antibiogram of β-lactamase-producing Proteus species in a tertiary care hospital, India. Ann Med Health Sci Res 6(5):267–269. https://doi.org/10.4103/amhsr.amhsr_413_15

    CAS  Article  Google Scholar 

  36. 36.

    Umar M, Yaya A, Yusuf G, Tafinta I, Aliko A, Jobbi D, Lawal G (2016) Biochemical characterization and antimicrobial susceptibility trends of Proteus mirabilis isolated from patients suspected with urinary tract infections attending sickbay hospital, Zaria, Kaduna, Nigeria. Ann Bio Sci 4(2):1–8

    CAS  Google Scholar 

  37. 37.

    Amir S, Hamid SA, Bayoumi M, Shanan S, Alouffi S, Alharbi SA, Alshammari FD, Abd H (2017) Elevated antibiotic resistance of sudanese urinary tract infection bacteria. EXCLI 7(16):1073–1080. https://doi.org/10.17179/excli2017-424

    Article  Google Scholar 

  38. 38.

    Senthamarai S, Sivasankari S, Anitha C, Kumudavathi MS, Amshavathani SK, Venugopal V, Thenmozhi Valli RP (2015) A study on the antibiotic susceptibility pattern of Proteus spp among various samples. Int J Advan Pharm Biol Chem 4(2):355–360

    CAS  Google Scholar 

  39. 39.

    El-Gamasy MA (2017) Prevalence of infective organisms of infections of urinary tract in a sample of Arab infants and children. J Integr Nephrol Androl 4(4):136–140. https://doi.org/10.4103/jina.jina_21_17

    Article  Google Scholar 

  40. 40.

    Feglo PK, Gbedema SY, Quay SNA, Adu-Sarkodie Y, Opoku-Okrah C (2010) Occurrence, species distribution and antibiotic resistance of Proteus isolates: a case study at the Komfo Anokye teaching hospital (KATH) in Ghana. Int J Pharm Sci Res 9:347–352

    Google Scholar 

  41. 41.

    Oluremi B, Idowu A, Olaniyi J (2011) Antibiotic susceptibility of common bacterial pathogens in urinary tract infections in a teaching hospital in Southwestern Nigeria. Afr J Microbiol Res 5(22):3658–3663. https://doi.org/10.5897/AJMR11.405

    Article  Google Scholar 

  42. 42.

    Pondei K, Orutugu L, Pondei J (2012) Current microbial and culture sensitivity pattern of urinary tract infection in a private hospital setting in Bayelsa state, Nigeria. Int Res J Microbiol 3(12):393–398

    Google Scholar 

  43. 43.

    Wang JT, Chen PC, Chang SC, Shiau YR, Wang HY, Lai JF, Huang IW, Tan MC, Lauderdale TLY (2014) Antimicrobial susceptibilities of Proteus mirabilis: a longitudinal nationwide study from the Taiwan surveillance of antimicrobial resistance (TSAR) program. BMC Infect Dis 14(1):486. https://doi.org/10.1186/1471-2334-14-486

    Article  Google Scholar 

  44. 44.

    Esquivel JG, Arturo Govea A, Luis Beas S, QFB ELG, Ivan Delgado E (2009) Urinary bacteria sensitivity and resistance in patients with chronic urinary catheter. Int J Infect Dis 7(1):1–6 http://ispub.com/IJID/7/1/12572 .

    Google Scholar 

  45. 45.

    Thana K, Shawn V, Kamaljit S (2013) Urinary tract infections due to multidrug-resistant Enterobacteriaceae: prevalence and risk factors in a Chicago Emergency Department. Emerg Med Int 2013:258517. https://doi.org/10.1155/2013/258517

    Article  Google Scholar 

  46. 46.

    Kibret M, Abera B (2014) Prevalence and antibiogram of bacterial isolates from urinary tract infections at Dessie Health Research Laboratory, Ethiopia. Asian Pac J Trop Biomed 4(2):164–168. https://doi.org/10.1016/S2221-1691(14)60226-4

    Article  Google Scholar 

  47. 47.

    Gessese YA, Damessa DL, Amare MM, Bahta YH, Shifera AD, Tasew FS, Gebremedhin EZ (2017) Urinary pathogenic bacterial profile, antibiogram of isolates and associated risk factors among pregnant women in Ambo town, Central Ethiopia: a cross-sectional study. Antimicrob Resist Infect Control 29(6):132–110. https://doi.org/10.1186/s13756-017-0289-6

    Article  Google Scholar 

  48. 48.

    Li X, Chen Y, Gao W, Ye H, Shen Z, Wen Z, Wei J (2017) A 6-year study of complicated urinary tract infections in southern China: prevalence, antibiotic resistance, clinical and economic outcomes. Ther Clin Risk Manag 13:1479–1487. https://doi.org/10.2147/TCRM.S143358

    Article  Google Scholar 

  49. 49.

    Cheesbrough M (2006) District laboratory practice in tropical countries. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511543470

  50. 50.

    Ndihokubwayo JB, Yahaya AA, Dester A, Ki-Zerbo G, Asamoah-Odei E, Keita B (2013) Antimicrobial resistance in the African region: issues, challenges and actions proposed. African Health Monit 16:27–30 https://apps.who.int/medicinedocs/documents/s22169en/s22169en.pdf

    Google Scholar 

  51. 51.

    Miquel S, Lagrafeuille R, Souweine B, Forestier C (2016) Anti-biofilm activity as a health issue. Front Microbiol 7:592. https://doi.org/10.3389/fmicb.2016.00592

    Article  Google Scholar 

  52. 52.

    Delcaru C, Alexandru I, Podgoreanu P, Grosu M, Stavropoulos E, Chifiriuc MC, Lazar V (2016) Microbial biofilms in urinary tract infections and prostatitis: etiology, pathogenicity, and combating strategies. Pathogens 5(4):65. https://doi.org/10.3390/pathogens5040065

    CAS  Article  Google Scholar 

  53. 53.

    Fujihara M, Obara H, Watanabe Y, Ono HK, Sasaki J, Goryo M, Harasawa R (2011) Acidic environments induce differentiation of Proteus mirabilis into swarmer morphotypes. Microbiol Immunol 55(7):489–493. https://doi.org/10.1111/j.1348-0421.2011.00345.x

    CAS  Article  Google Scholar 

  54. 54.

    Morris NS, Stickler DJ (1998) The effect of urease inhibitors on the encrustation of urethral catheters. Urol Res 26(4):275–279

    CAS  Article  Google Scholar 

  55. 55.

    Stickler DJ, Lear JC, Morris NS, Macleod SM, Downer A, Cadd DH, Feast WJ (2006) Observations on the adherence of Proteus mirabilis onto polymer surfaces. J Appl Microbiol 100(5):1028–1033. https://doi.org/10.1111/j.1365-2672.2006.02840.x

    CAS  Article  Google Scholar 

  56. 56.

    Huang T, Geng H, Miyyapuram VR, Sit CS, Vederas JC, Nakano MM (2009) Isolation of a variant of subtilosin a with hemolytic activity. J Bacteriol 191(18):5690–5696. https://doi.org/10.1128/JB.00541-09

    CAS  Article  Google Scholar 

  57. 57.

    Van Kuijk S, Noll KS, Chikindas ML (2012) The species-specific mode of action of the antimicrobial peptide subtilosin against Listeria monocytogenes Scott A. Lett Appl Microbiol 54(1):52–58. https://doi.org/10.1111/j.1472-765X.2011.03170.x

    CAS  Article  Google Scholar 

  58. 58.

    Karlyshev AV, Melnikov VG, Chistyakov VA (2014) Draft genome sequence of Bacillus amyloliquefaciens B-1895. Genome Announc 2(3):e00633–e00614. https://doi.org/10.1128/genomeA.00633-14

    Article  Google Scholar 

  59. 59.

    Karlyshev AV, Melnikov VG, Chikindas ML (2014) Draft genome sequence of Bacillus subtilis strain KATMIRA1933. Genome Announc 2(3):e00619–e00614. https://doi.org/10.1128/genomeA.00619-14

    Article  Google Scholar 

  60. 60.

    Al Atya AK, Belguesmia Y, Chataigne G, Ravallec R, Vachée A, Szunerits S, Boukherroub R, Drider D (2016) Anti-MRSA activities of enterocins DD28 and DD93 and evidences on their role in the inhibition of biofilm formation. Front Microbiol 7:817. https://doi.org/10.3389/fmicb.2016.00817

    Article  Google Scholar 

  61. 61.

    Drider D, Bendali F, Naghmouchi K, Chikindas ML (2016) Bacteriocins: not only antibacterial agents. Probiotics Antimicrob Proteins 8(4):177–182. https://doi.org/10.1007/s12602-016-9223-0

    CAS  Article  Google Scholar 

  62. 62.

    Algburi A, Zehm S, Netrebov V, Bren AB, Chistyakov V, Chikindas ML (2016) Subtilosin prevents biofilm formation by inhibiting bacterial quorum sensing. Probiotics Antimicrob Proteins 9(1):81–90. https://doi.org/10.1007/s12602-016-9242-x

    CAS  Article  Google Scholar 

  63. 63.

    Turovskiy Y, Cheryian T, Algburi A, Wirawan RE, Takhistov P, Sinko PJ, Chikindas ML (2012) Susceptibility of Gardnerella vaginalis biofilms to natural antimicrobials subtilosin, ε-poly-L-lysine, and lauramide arginine ethyl ester. Infect Dis Obstet Gynecol 2012:284762. https://doi.org/10.1155/2012/284762

    CAS  Article  Google Scholar 

  64. 64.

    Noll KS, Sinko PJ, Chikindas ML (2011) Elucidation of the molecular mechanisms of action of the natural antimicrobial peptide subtilosin against the bacterial vaginosis-associated pathogen Gardnerella vaginalis. Probiotics Antimicrob Proteins 3(1):41–47. https://doi.org/10.1007/s12602-010-9061-4

    CAS  Article  Google Scholar 

  65. 65.

    Varga ZG, Armada A, Cerca P, Amaral L, Mior Ahmad Subki MA, Savka MA, Szegedi E, Kawase M, Motohashi N, Molnár J (2012) Inhibition of quorum sensing and efflux pump system by trifluoromethyl ketone proton pump inhibitors. Vivo 26(2):277–285

    CAS  Google Scholar 

Download references

Funding

MLC was supported by the Ministry of Science and Higher Education of the Russian Federation (Project Number 075-15-2019-1880).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ammar Algburi.

Ethics declarations

The samples were collected, processed, and stored, and associated data were analyzed according to the Ethical Guidelines for the use of animals in research (University of Diyala, Baqubah, Iraq). Ethical approval for the collection and processing of samples of human origin was not required since this study was a community service improvement. Personal information and data were kept confidential.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Algburi, A., Alazzawi, S.A., Al-Ezzy, A.I.A. et al. Potential Probiotics Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 Co-Aggregate with Clinical Isolates of Proteus mirabilis and Prevent Biofilm Formation. Probiotics & Antimicro. Prot. 12, 1471–1483 (2020). https://doi.org/10.1007/s12602-020-09631-0

Download citation

Keywords

  • Probiotics
  • Bacillus
  • Co-aggregation
  • Proteus mirabilis
  • Biofilm prevention