Skip to main content
Log in

Potentiated In Vitro Probiotic Activities of Lactobacillus fermentum LfQi6 Biofilm Biomass Versus Planktonic Culture

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

In this study, we describe enhanced in vitro probiotic activities of preformed biofilms versus planktonic cultures of Lactobacillus fermentum LfQi6 (LfQi6), a lactic acid bacterium (LAB) isolated from the human microbiome. These evaluations are used to help predict host in vivo probiotic benefits and therefore indicate that LfQi6 may provide significant probiotic benefits in the human host when administered as preformed biofilms rather than as planktonic cultures. Specifically, LfQi6 biofilms demonstrated improved in vitro performance versus LfQi6 planktonic cultures for host gastrointestinal survival and engraftment, strain-specific antimicrobial and anti-biofilm activity against clinically significant pathogens, concurrent promotion of beneficial gastrointestinal commensal biofilms, beneficial commensal enzyme activities, and host cellular-protective glutathione antioxidant activity. Evaluation of LfQi6 according to the European Food Safety Authority (EFSA 2007, 2012, 2015) Guidelines and Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Evaluation of Probiotics in Food (FAO/WHO, 2002) demonstrates strain safety. In summary, in vitro evaluation of Lact. fermentum LfQi6 demonstrates significant evidence for strain-specific probiotic characteristics and safety. Moreover, strain-specific as well as biofilm-phenotype-specific benefits demonstrated in vitro furthermore suggest that in vivo use of LfQi6 biofilm biomass may be of greater benefit to the human host than the use of standard planktonic cultures. This concept – potentiating probiotic benefits through the use of preformed commensal biofilms – is novel and may serve to further broaden the application of microbial biofilms to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of the Joint Food and Agriculture (FAO) of the United Nations/World Health Organization (WHO) Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria

  2. Szajewska H, Setty M, Mrukowicz J, Guandalini S (2006) Probiotics in gastrointestinal diseases in children: hard and not-so-hard evidence of efficacy. J Pediatr Gastroenterol Nutr 42(5):454–475. https://doi.org/10.1097/01.mpg.0000221913.88511.72

    Article  PubMed  Google Scholar 

  3. Szajewska H, Ruszczynski M, Radzikowski A (2006) Probiotics in the prevention of antibiotic-associated diarrhea in children: a meta-analysis of randomized controlled trials. J Pediatr 149(3):367–372. https://doi.org/10.1016/j.jpeds.2006.04.053

    Article  PubMed  Google Scholar 

  4. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322. https://doi.org/10.1126/science.284.5418.1318

    Article  CAS  PubMed  Google Scholar 

  5. Costerton JW, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112(10):1466–1477. https://doi.org/10.1172/jci20365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(12):167–193. https://doi.org/10.1128/cmr.15.2.167-193.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Subhadra B, Krier J, Hofstee K, Monsul N, Berkes E (2015) Draft whole-genome sequence of Lactobacillus fermentum LfQi6, derived from the human microbiome. Genome Announc 3(3):e00423–e00415. https://doi.org/10.1128/genomeA.00423-15

    Article  PubMed  PubMed Central  Google Scholar 

  8. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam HF, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  9. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38(Web Server issue):W695–W699. https://doi.org/10.1093/nar/gkq313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dewey CN (2012) Whole-genome alignment. Methods Mol Biol 855:237–257. https://doi.org/10.1007/978-1-4939-9074-0_4

    Article  CAS  PubMed  Google Scholar 

  11. Galia E, Nicoliades E, Horter D, Lobenberg R, Reppas C, Dressman JB (1998) Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res 15(5):698–705

    Article  CAS  PubMed  Google Scholar 

  12. Rosenberg M (1984) Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol Lett 22(3):289–295. https://doi.org/10.1111/j.1574-6968.1984.tb00743.x

    Article  CAS  Google Scholar 

  13. Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175. https://doi.org/10.1038/nprot.2007.521

    Article  CAS  PubMed  Google Scholar 

  14. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:2740 http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2018.EN-1389/full. Accessed 24 Jul 18

  15. Bover-Cid S, Holzapfel WH (1999) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 53(1):33–41. https://doi.org/10.1016/S0168-1605(99)00152-X

    Article  CAS  PubMed  Google Scholar 

  16. Zhou JS, Gopal PK, Gill HS (2001) Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Int J Food Microbiol 63(1–2):81–90. https://doi.org/10.1016/S0168-1605(00)00398-6

    Article  CAS  PubMed  Google Scholar 

  17. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL, Gerdes S, Henry CS, Kenyon RW, Machi D, Mao C, Nordberg EK, Olsen GJ, Murphy-Olson DE, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Vonstein V, Warren A, Xia F, Yoo H, Stevens RL (2017) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 45(D1):D535–D542. https://doi.org/10.1093/nar/gkw1017

    Article  CAS  PubMed  Google Scholar 

  18. Reuter G (1965) Das vorkommen on laktobazillen in lebensmittel und ihr verhalten im menschlichen intestinaltrakt. Zentbl Bakteriol Parasitol Infekt Hyg I Orig 197S:468–487

    Google Scholar 

  19. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  20. Sahadeva RPK, Leong SF, Chua KH, Tan CH, Chan HY, Tong EV, Wong SYW, Chan HK (2011) Survival of commercial probiotic strains to pH and bile. Int Food Res J 18(4):1515–1522 http://www.ifrj.upm.edu.my/18%20(04)%202011/(44)IFRJ-2011-285.pdf. Accessed 26 Feb 19

  21. Chou LS, Weimer B (1999) Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus. J Dairy Sci 82(1):23–31. https://doi.org/10.3168/jds.S0022-0302(99)75204-5

    Article  CAS  PubMed  Google Scholar 

  22. Overbeek R, Olson R, Pusch GD, Olson GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42(Database Issue):D206–D214. https://doi.org/10.1093/nar/gkt1226

    Article  CAS  PubMed  Google Scholar 

  23. Pophaly SD, Singh R, Pophaly SD, Kaushik JK, Tomar SK (2012) Current status and emerging role of glutathione in food grade lactic acid bacteria. Microb Cell Factories 11:114. https://doi.org/10.1186/1475-2859-11-114

    Article  CAS  Google Scholar 

  24. Nikolic M, Jovcic B, Kojic M, Topisirovic L (2010) Surface properties of Lactobacillus and Leuconostoc isolates from homemade cheeses showing auto-aggregation ability. Eur Food Res Technol 231(6):925–931. https://doi.org/10.1007/s00217-101-1344-1

    Article  CAS  Google Scholar 

  25. Hussain M, Khan NT, Wajid A, Rasool SA (2008) Technological characterization of indigenous enterococcal population for probiotic potential. Pak J Bot 40:2

    Google Scholar 

  26. Thongaram T, Hoeflinger J, Chow J, Miller MJ (2017) Prebiotic galactooligosaccharide metabolism by probiotic lactobacilli and bifidobacteria. J Agric Food Chem 65(20):4184–4192. https://doi.org/10.3168/jds.2017-12753

    Article  CAS  PubMed  Google Scholar 

  27. LeBlanc JG, Ledue-Clier F, Bensaada M, de Giori GS, Guerekobaya T, Sesama F, Juillard V, Rabot S, Piard JC (2008) Ability of Lactobacillus fermentum to overcome host alpha-galactosidase deficiency, as evidenced by reduction of hydrogen excretion in rats consuming soya alpha-galacto-oligosaccharides. BMC Microbiol 8:22. https://doi.org/10.1186/1471-2180-8-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. European Food Safety Authority (EFSA) (2008) Update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. EFSA J 732:1–15

    Google Scholar 

  29. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Ann Rev Microbiol 41:435–464. https://doi.org/10.1146/annurev.mi.41.100187.002251

    Article  CAS  Google Scholar 

  30. Palestrant D, Holzknecht ZE, Collins BH, Parker W, Miller SE, Bollinger RR (2004) Microbial biofilms in the gut: visualization by electron microscopy and by acridine orange staining. Ultrastruct Pathol 28(1):23–27. https://doi.org/10.1080/01913120490275196

    Article  PubMed  Google Scholar 

  31. Linnes JC, Ma H, Bryers JD (2013) Giant extracellular matrix binding protein expression in Staphylococcus epidermidis is regulated by biofilm formation and osmotic pressure. Curr Microbiol 66(6):627–633. https://doi.org/10.1007/s00284-013-0316-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rubio R, Jofre A, Martin B, Aymerich T, Garriga M (2014) Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages. Food Microbiol 38:303–311. https://doi.org/10.1016/j.fm.2013.07.015

    Article  CAS  PubMed  Google Scholar 

  33. Ferrnandez MF, Boris S, Barbes C (2003) Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J Appl Microbiol 94(3):449–455. https://doi.org/10.1046/j.1365-2672.2003.01850.x

    Article  Google Scholar 

  34. Prasad J, Gill HS, Smart J, Gopal PK (1998) Selection and characterization of Lactobacillus and Bifidobacterium strains for use as probiotics. Int Dairy J 8(12):993–1002. https://doi.org/10.1016/S0958-6946(99)00024-2

    Article  Google Scholar 

  35. Islam MA, Bajracharya P, Kang SK, Yun CH, Kim EM, Jeong HJ, Choi YJ, Kim EB, Cho CS (2011) Mucoadhesive alginate/poly (L-lysine)/thiolated alginate microcapsules for oral delivery of Lactobacillus salivarius 29. J Nanosci Nanotechnol 11(8):7091–7095. https://doi.org/10.1166/jnn.2011.4858

    Article  CAS  PubMed  Google Scholar 

  36. Ruiz L, Margolles A, Sanchez B (2013) Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol 4:396. https://doi.org/10.3389/fmicb.2013.00396

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR (2008) Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A 105(36):13580–13585. https://doi.org/10.1073/pnas.0804437105

    Article  PubMed  PubMed Central  Google Scholar 

  38. Begley M, Hill C, Gahan CG (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72(3):1729–1738. https://doi.org/10.1128/aem.72(3):1729-1738.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miremadi F, Ayyash M, Sherkat F, Stojanovska L (2014) Cholesterol reduction mechanisms and fatty acid composition of cellular membranes of probiotic Lactobacilli and Bifidobacteria. J Funct Foods 9:295–305. https://doi.org/10.1016/j.jff.2014.05.002

    Article  CAS  Google Scholar 

  40. Dong Z, Zhang J, Lee B, Li H, Du G, Chen J (2012) A bile salt hydrolase gene of Lactobacillus plantarum BBE7 with cholesterol-removing activity. Eur Food Res Technol 235(3):419–427. https://doi.org/10.1007/s00217-012-1769-9

    Article  CAS  Google Scholar 

  41. Noriega L, Cuevas I, Margolles A, de los Reyes-Gavilan CG (2006) Deconjugation and bile salts hydrolase activity by Bifidobacterium strains with acquired resistance to bile. Int Dairy J 16(8):850–855. https://doi.org/10.1016/j.idairyj.2005.09.008

    Article  CAS  Google Scholar 

  42. Klaver FA, van der Meer R (1993) The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl Environ Microbiol 59(4):1120–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aoudia N, Rieu A, Briandet R, Deschamps J, Chluba J, Jego G, Garrido C, Guzzo J (2016) Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiol 53(Pt A):51–59. https://doi.org/10.1016/j.fm.2015.04.009

    Article  CAS  PubMed  Google Scholar 

  44. Bron PA, Molenaar D, de Vos WM, Kleerebezem M (2006) DNA micro-array-based of bile-responsive genes in Lactobacillus plantarum. J Appl Microbiol 100(4):728–738. https://doi.org/10.1111/j.1365-2672.2006.02891.x

    Article  CAS  PubMed  Google Scholar 

  45. Mikelsaar M, Zilmer M (2009) Lactobacillus fermentum ME-3 - an antimicrobial and antioxidative probiotic. Microb Ecol Health Dis 21(1):1–27. https://doi.org/10.1080/08910600902815561

    Article  CAS  PubMed  Google Scholar 

  46. Amaretti A, di Nunzio M, Pompei A, Raimondi S, Rossi M, Bordoni A (2013) Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl Microbiol Biotechnol 97(2):809–817. https://doi.org/10.1007/s00253-012-4241-7

    Article  CAS  PubMed  Google Scholar 

  47. Mishra V, Shah C, Mokashe N, Chavan R, Yadav H, Prajapati J (2015) Probiotics as potential antioxidants: a systematic review. J Agric Food Chem 63(14):3615–3626. https://doi.org/10.1021/jf506326t

    Article  CAS  PubMed  Google Scholar 

  48. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492. https://doi.org/10.1093/jn/134.3.489

    Article  CAS  PubMed  Google Scholar 

  49. Jones DP (2002) Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol 348:93–112. https://doi.org/10.1016/s0076-6879(02)48630-2

    Article  CAS  PubMed  Google Scholar 

  50. Valencia E, Marina A, Hardy G (2001) Glutathione-nutritional and pharmacologic viewpoints: part IV. Nutrition 17(9):783–784

    Article  CAS  PubMed  Google Scholar 

  51. Copley SD, Dhillon JK (2002) Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biol 3(5):research0025. https://doi.org/10.1186/gb-2002-3-5-research0025

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kullisaar T, Songisepp E, Aunapuu M, Kilk K, Arend A, Mikelsaar M, Rehema A, Zilmer M (2010) Complete glutathione system in probiotic Lactobacillus fermentum ME-3. Prikl Biokhim Mikrobiol 46(5):527–531

    CAS  PubMed  Google Scholar 

  53. Stewart PS, Zhang T, Xu R, Pitts B, Walters MC, Roe F, Kikhney J, Moter A (2016) Reaction-diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. NPJ Biofilms Microbiomes 2:16012. https://doi.org/10.1038/npjbiofilms.2016.12

    Article  PubMed  PubMed Central  Google Scholar 

  54. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138. https://doi.org/10.1016/s0140-6736(01)05321-1

    Article  CAS  PubMed  Google Scholar 

  55. Saarela M, Mogensen G, Fonden R, Matto J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84(3):197–215. https://doi.org/10.1016/S0168-1656(00)00375-8

    Article  CAS  PubMed  Google Scholar 

  56. Argyri AA, Zoumpopoulou G, Karatzas KA, Tsakalidou E, Nychas GJ, Panagou EZ, Tassou CC (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 33(2):282–291. https://doi.org/10.1016/j.fm.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  57. Krasowska A, Sigler K (2014) How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol 4:112. https://doi.org/10.3389/fcimb.2014.00112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Collado MC, Isolauri E, Salminen S (2008) Specific probiotic strains and their combinations counteract adhesion of Enterobacter sakazakii to intestinal mucus. FEMS Microbiol Lett 285(1):58–64. https://doi.org/10.1111/j.1574-6968.2008.01211.x

    Article  CAS  PubMed  Google Scholar 

  59. Keller MK, Hasslof P, Stecksen-Blicks C, Twetman S (2011) Co-aggregation and growth inhibition of probiotic lactobacilli and clinical isolates of mutans streptococci: an in vitro study. Acta Odontol Scand 69(5):263–268. https://doi.org/10.3109/00016357.2011.554863

    Article  PubMed  Google Scholar 

  60. Velez M, De Keersmaecker SC, Vanderleyden J (2007) Adherence factors of Lactobacillus in the human intestinal tract. FEMS Microbiol Lett 276(2):140–148. https://doi.org/10.1111/j.1574-6968.2007.00908.x

    Article  CAS  PubMed  Google Scholar 

  61. Fazary AE, Ju YH (2007) Feruloyl esterases as biotechnological tools: current and future perspectives. Acta Biochim Biophys Sin Shanghai 39(11):811–828. https://doi.org/10.1111/j.1745-7270.2007.00348.x

    Article  CAS  PubMed  Google Scholar 

  62. Bhathena J, Martoni C, Kulamarva A, Urbanska AM, Malhotra M, Prakash S (2009) Orally delivered microencapsulated live probiotic formulation lowers serum lipids in hypercholesterolemic hamsters. J Med Food 12(2):310–319. https://doi.org/10.1371/journal.pone.0058394

    Article  CAS  PubMed  Google Scholar 

  63. Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40(2):92–100. https://doi.org/10.3164/jcbn.40.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Andreasen MF, Kroon PA, Williamson G, Garcia-Conesa MT (2001) Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals. J Agric Food Chem 49(11):5679–5684. https://doi.org/10.1021/jf010668c

    Article  CAS  PubMed  Google Scholar 

  65. Mukdsi MC, Cano MP, Gonzalez SN, Medina RB (2012) Administration of Lactobacillus fermentum CRL1446 increases intestinal feruloyl esterase activity in mice. Lett Appl Microbiol 54(1):18–25. https://doi.org/10.1111/j.1472-765X.2011.03166.x

    Article  CAS  PubMed  Google Scholar 

  66. Bhathena J, Tomaro-Duchesneau C, Martoni C, Malhotra M, Kulamarva A, Urbanska MA, Paul A, Prakash S (2012) Effect of orally administered microencapsulated FA-producing Lact. fermentum on markers of metabolic syndrome: an in vivo analysis. J Diabetes Metab S6:006. https://doi.org/10.1089/jmf.2008.0166

    Article  Google Scholar 

  67. Tomaro-Duchesneau C, Saha S, Malhotra M, Jones ML, Labbe A, Rodes L, Kahouli I, Prakash S (2014) Effect of orally administered Lact. fermentum NCIMB 5221 on markers of metabolic syndrome: an in vivo analysis using ZDF rats. Appl Microbiol Biotechnol 98(1):115–126. https://doi.org/10.1007/s00253-013-5252-8

    Article  CAS  PubMed  Google Scholar 

  68. Couteau D, McCartney AL, Gibson GR, Williamson G, Faulds CB (2001) Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. J Appl Microbiol 90(6):873–881. https://doi.org/10.1046/j.1365-2672.2001.01316.x

    Article  CAS  PubMed  Google Scholar 

  69. Wasfi R, Abd El-Rahman OA, Zafer MM, Ashour HM (2018) Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J Cell Mol Med 22(3):1972–1983. https://doi.org/10.1111/jcmm

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM (2018) Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 49:23–28. https://doi.org/10.1016/j.copbio.2017.07.011

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project is exclusively funded by Quorum Innovations LLC (Sarasota, Florida), a human microbiome-based therapeutics discovery biotechnology company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Berkes.

Ethics declarations

Conflict of Interest

Drs. Berkes and Monsul report the following disclosures: Co-founders of Quorum Innovations, LLC (Sarasota, FL). They are also co-inventors on several patents in the area of the human microbiome and biofilm modulation. The remaining authors are or were affiliated with Quorum Innovations, LLC.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkes, E., Liao, YH., Neef, D. et al. Potentiated In Vitro Probiotic Activities of Lactobacillus fermentum LfQi6 Biofilm Biomass Versus Planktonic Culture. Probiotics & Antimicro. Prot. 12, 1097–1114 (2020). https://doi.org/10.1007/s12602-019-09624-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-019-09624-8

Keywords

Navigation