Skip to main content
Log in

Bacteriocin of Pediococcus acidilactici HW01 Inhibits Biofilm Formation and Virulence Factor Production by Pseudomonas aeruginosa

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is a potential source of food contamination that leads to food spoilage and infections as a result of the generation of biofilm and virulence factors. In the present study, we demonstrate that bacteriocin produced by Pediococcus acidilactici HW01 (HW01 bacteriocin) effectively inhibited the biofilm formation of Ps. aeruginosa (66.41, 45.77, and 21.73% of biofilm formation at 0.5, 1, and 2 mg/mL of HW01 bacteriocin, respectively) as well as the production of virulence factors. By means of a microtiter plate method and scanning electron microscopy, HW01 bacteriocin inhibited biofilm formation by Ps. aeruginosa in a dose-dependent manner. Although the viability of biofilm cells of Ps. aeruginosa was reduced in the presence of HW01 bacteriocin, the viability of planktonic cells of Ps. aeruginosa was not affected by HW01 bacteriocin (2.0 × 109 CFU/mL vs. 2.4 × 109 CFU/mL in the absence and the presence of HW01 bacteriocin, respectively). Additionally, HW01 bacteriocin decreased the twitching motility of Ps. aeruginosa as well as the production of virulence factors, such as pyocyanin, protease, and rhamnolipid. Furthermore, HW01 bacteriocin significantly inhibited Ps. aeruginosa biofilm formation on the surface of stainless steel (57% reduction at 24 h and 83% reduction at 72 h). These results indicate that HW01 bacteriocin is an effective antagonist of Ps. aeruginosa as a result of its ability to inhibit biofilm formation and the production of virulence factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gu X, Sun Y, Tu K, Dong Q, Pan L (2016) Predicting the growth situation of Pseudomonas aeruginosa on agar plates and meat stuffs using gas sensors. Sci Rep 6:38721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Neto NJG, Luz ID, Honorio VG, da Conceicao ML, de Souza EL (2012) Pseudomonas aeruginosa cells adapted to Rosmarinus officinalis L. essential oil and 1,8-cineole acquire no direct and cross protection in a meat-based broth. Food Res Int 49:143–146

    Article  CAS  Google Scholar 

  3. Liu M, Gray JM, Griffiths MW (2006) Occurrence of proteolytic activity and N-acyl-homoserine lactone signals in the spoilage of aerobically chill-stored proteinaceous raw foods. J Food Prot 69:2729–2737

    Article  CAS  PubMed  Google Scholar 

  4. Dunstall G, Rowe MT, Wisdom GB, Kilpatrick D (2005) Effect of quorum sensing agents on the growth kinetics of Pseudomonas spp. of raw milk origin. J Dairy Res 72:276–280

    Article  CAS  PubMed  Google Scholar 

  5. Marchand S, Vandriesche G, Coorevits A, Coudijzer K, De Jonghe V, Dewettinck K, De Vos P, Devreese B, Heyndrickx M, De Block J (2009) Heterogeneity of heat-resistant proteases from milk Pseudomonas species. Int J Food Microbiol 133:68–77

    Article  CAS  PubMed  Google Scholar 

  6. Allydice-Francis K, Brown PD (2012) Diversity of antimicrobial resistance and virulence determinants in Pseudomonas aeruginosa associated with fresh vegetables. Int J Microbiol 2012:426241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Van Houdt R, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109:1117–1131

    Article  PubMed  Google Scholar 

  8. Gunduz GT, Tuncel G (2006) Biofilm formation in an ice cream plant. Antonie Van Leeuwenhoek 89:329–336

    Article  PubMed  Google Scholar 

  9. Galie S, Garcia-Gutierrez C, Miguelez EM, Villar CJ, Lombo F (2018) Biofilms in the food industry: health aspects and control methods. Front Microbiol 9:898

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hoiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PO, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3(2):55–65

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hengzhuang W, Wu H, Ciofu O, Song Z, Hoiby N (2011) Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 55:4469–4474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hengzhuang W, Wu H, Ciofu O, Song Z, Hoiby N (2012) In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrob Agents Chemother 56:2683–2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122

    Article  CAS  PubMed  Google Scholar 

  14. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  CAS  PubMed  Google Scholar 

  15. Srey S, Jahid IK, Ha SD (2013) Biofilm formation in food industries: a food safety concern. Food Control 31:572–585

    Article  Google Scholar 

  16. Balloy V, Verma A, Kuravi S, Si-Tahar M, Chignard M, Ramphal R (2007) The role of flagellin versus motility in acute lung disease caused by Pseudomonas aeruginosa. J Infect Dis 196:289–296

    Article  CAS  PubMed  Google Scholar 

  17. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524

    Article  CAS  PubMed  Google Scholar 

  18. Chen JR, Rossman ML, Pawar DM (2007) Attachment of enterohemorrhagic Escherichia coli to the surface of beef and a culture medium. Lwt-Food Sci Technol 40:249–254

    Article  CAS  Google Scholar 

  19. Sharma M, Anand SK (2002) Characterization of constitutive microflora of biofilms in dairy processing lines. Food Microbiol 19:627–636

    Article  CAS  Google Scholar 

  20. Jessen B, Lammert L (2003) Biofilm and disinfection in meat processing plants. Int Biodeterior Biodegradation 51:265–269

    Article  CAS  Google Scholar 

  21. Okuda K, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, Sonomoto K, Mizunoe Y (2013) Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother 57:5572–5579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Al-Mathkhury HJ, Ali AS, Ghafil JA (2011) Antagonistic effect of bacteriocin against urinary catheter associated Pseudomonas aeruginosa biofilm. N Am J Med Sci 3:367–370

    Article  PubMed  PubMed Central  Google Scholar 

  23. Han GG, Song AA, Kim EB, Yoon SH, Bok JD, Cho CS, Kil DY, Kang SK, Choi YJ (2017) Improved antimicrobial activity of Pediococcus acidilactici against Salmonella Gallinarum by UV mutagenesis and genome shuffling. Appl Microbiol Biotechnol 101:5353–5363

    Article  CAS  PubMed  Google Scholar 

  24. Altuntas EG, Cosansu S, Ayhan K (2010) Some growth parameters and antimicrobial activity of a bacteriocin-producing strain Pediococcus acidilactici 13. Int J Food Microbiol 141:28–31

    Article  CAS  PubMed  Google Scholar 

  25. Anastasiadou S, Papagianni M, Filiousis G, Ambrosiadis I, Koidis P (2008) Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: production conditions, purification and characterization. Bioresour Technol 99:5384–5390

    Article  CAS  PubMed  Google Scholar 

  26. Soccol CR, Vandenberghe LPD, Spier MR, Medeiros ABP, Yamaguishi CT, Lindner JD, Pandey A, Thomaz-Soccol V (2010) The potential of probiotics: a review. Food Technol Biotech 48:413–434

    CAS  Google Scholar 

  27. Ahn HW, Kim JS, Kim WJ (2017) Isolation and characterization of bacteriocin-producing Pediococcus acidilactici HW01 from malt and its potential to control beer spoilage lactic acid bacteria. Food Control 80:59–66

    Article  CAS  Google Scholar 

  28. Kim N-N, Kim WJ, Kang S-S (2019) Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella Typhimurium. Food Control 98:274–280

    Article  CAS  Google Scholar 

  29. Kiymaci ME, Altanlar N, Gumustas M, Ozkan SA, Akin A (2018) Quorum sensing signals and related virulence inhibition of Pseudomonas aeruginosa by a potential probiotic strain’s organic acid. Microb Pathog 121:190–197

    Article  CAS  PubMed  Google Scholar 

  30. El-Shaer S, Shaaban M, Barwa R, Hassan R (2016) Control of quorum sensing and virulence factors of Pseudomonas aeruginosa using phenylalanine arginyl beta-naphthylamide. J Med Microbiol 65:1194–1204

    Article  CAS  PubMed  Google Scholar 

  31. Wilhelm S, Gdynia A, Tielen P, Rosenau F, Jaeger KE (2007) The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation. J Bacteriol 189:6695–6703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ochsner UA, Koch AK, Fiechter A, Reiser J (1994) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176:2044–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu H, Lee B, Yang L, Wang H, Givskov M, Molin S, Hoiby N, Song Z (2011) Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation. FEMS Immunol Med Microbiol 62:49–56

    Article  CAS  PubMed  Google Scholar 

  34. Rossi C, Serio A, Chaves-Lopez C, Anniballi F, Auricchio B, Goffredo E, Cenci-Goga BT, Lista F, Fillo S, Paparella A (2018) Biofilm formation, pigment production and motility in Pseudomonas spp. isolated from the dairy industry. Food Control 86:241–248

    Article  CAS  Google Scholar 

  35. Brachmann AO, Brameyer S, Kresovic D, Hitkova I, Kopp Y, Manske C, Schubert K, Bode HB, Heermann R (2013) Pyrones as bacterial signaling molecules. Nat Chem Biol 9:573–578

    Article  CAS  PubMed  Google Scholar 

  36. Kanatani K, Oshimura M, Sano K (1995) Isolation and characterization of acidocin A and cloning of the bacteriocin gene from Lactobacillus acidophilus. Appl Environ Microbiol 61:1061–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perez RH, Zendo T, Sonomoto K (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 13 Suppl 1:S3

  38. Field D, Seisling N, Cotter PD, Ross RP, Hill C (2016) Synergistic nisin-polymyxin combinations for the control of Pseudomonas biofilm formation. Front Microbiol 7:1713

    PubMed  PubMed Central  Google Scholar 

  39. Mathur H, Field D, Rea MC, Cotter PD, Hill C, Ross RP (2018) Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes 4:9

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sharma V, Harjai K, Shukla G (2018) Effect of bacteriocin and exopolysaccharides isolated from probiotic on P-aeruginosa PAO1 biofilm. Folia Microbiol 63:181–190

    Article  CAS  Google Scholar 

  41. de la Fuente-Nunez C, Korolik V, Bains M, Nguyen U, Breidenstein EB, Horsman S, Lewenza S, Burrows L, Hancock RE (2012) Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother 56:2696–2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cady NC, McKean KA, Behnke J, Kubec R, Mosier AP, Kasper SH, Burz DS, Musah RA (2012) Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLoS One 7:e38492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alipour M, Suntres ZE, Lafrenie RM, Omri A (2010) Attenuation of Pseudomonas aeruginosa virulence factors and biofilms by co-encapsulation of bismuth-ethanedithiol with tobramycin in liposomes. J Antimicrob Chemother 65:684–693

    Article  CAS  PubMed  Google Scholar 

  44. O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  PubMed  Google Scholar 

  45. Zhang QQ, Rui X, Li W, Chen XH, Jiang M, Dong MS (2016) Anti-swarming and -biofilm activities of rose phenolic extract during simulated in vitro gastrointestinal digestion. Food Control 64:189–195

    Article  CAS  Google Scholar 

  46. Li T, Wang D, Liu N, Ma Y, Ding T, Mei Y, Li J (2018) Inhibition of quorum sensing-controlled virulence factors and biofilm formation in Pseudomonas fluorescens by cinnamaldehyde. Int J Food Microbiol 269:98–106

    Article  CAS  PubMed  Google Scholar 

  47. Kim Y, Oh S, Park S, Seo JB, Kim SH (2008) Lactobacillus acidophilus reduces expression of enterohemorrhagic Escherichia coli O157 : H7 virulence factors by inhibiting autoinducer-2-like activity. Food Control 19:1042–1050

    Article  CAS  Google Scholar 

  48. Wang HH, Ye KP, Zhang QQ, Dong Y, Xu XL, Zhou GH (2013) Biofilm formation of meat-borne Salmonella enterica and inhibition by the cell-free supernatant from Pseudomonas aeruginosa. Food Control 32:650–658

    Article  CAS  Google Scholar 

  49. Kim YG, Lee JH, Kim SI, Baek KH, Lee J (2015) Cinnamon bark oil and its components inhibit biofilm formation and toxin production. Int J Food Microbiol 195:30–39

    Article  CAS  PubMed  Google Scholar 

  50. Das T, Kutty SK, Tavallaie R, Ibugo AI, Panchompoo J, Sehar S, Aldous L, Yeung AW, Thomas SR, Kumar N, Gooding JJ, Manefield M (2015) Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation. Sci Rep 5:8398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wilson R, Sykes DA, Watson D, Rutman A, Taylor GW, Cole PJ (1988) Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun 56:2515–2517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang HH, Cai LL, Li YH, Xu XL, Zhou GH (2018) Biofilm formation by meat-borne Pseudomonas fluorescens on stainless steel and its resistance to disinfectants. Food Control 91:397–403

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Wang June Kim, Department of Food Science and Biotechnology, Dongguk University, Goyang, Korea, for providing Ped. acidilactici HW01 used in this study.

Funding

This work was supported by a grant from the National Research Foundation of Korea, which is funded by the Korean government (NRF-2017R1D1A1B03028730).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Seong Kang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, DH., Kim, B.S. & Kang, SS. Bacteriocin of Pediococcus acidilactici HW01 Inhibits Biofilm Formation and Virulence Factor Production by Pseudomonas aeruginosa. Probiotics & Antimicro. Prot. 12, 73–81 (2020). https://doi.org/10.1007/s12602-019-09623-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-019-09623-9

Keywords

Navigation