Skip to main content

Advertisement

Log in

Safety Evaluation and Whole-Genome Annotation of Lactobacillus plantarum Strains from Different Sources with Special Focus on Isolates from Green Tea

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Lactobacillus plantarum shows high intraspecies diversity species, and has one of the largest genome sizes among the lactobacilli. It is adapted to diverse environments and provides a promising potential for various applications. The aim of the study was to investigate the safety and probiotic properties of 18 L. plantarum strains isolated from fermented food products, green tea, and insects. For preliminary safety evaluation the L. plantarum strains were tested for their ability to produce hemolysin and biogenic amines and for their antibiotic resistance. Based on preliminary safety screening, four strains isolated from green tea showed antibiotic resistance below the cut-off MIC values suggested by EFSA, and were selected out of the 18 strains for more detailed studies. Initial selection of strains with putative probiotic potential was determined by their capacity to survive in the human GIT using an in vitro simulation model, and for their adhesion to human Caco-2/TC-7 cell line. Under simulated GIT conditions, all four L. plantarum strains isolated from green tea showed higher survival rates than the control (L. plantarum subsp. plantarum ATCC 14917). All studied strains were genetically identified by 16S rRNA gene sequencing and confirmed to be L. plantarum. In addition, whole-genome sequence analysis of L. plantarum strains APsulloc 331261 and APsulloc 331263 from green tea was performed, and the outcome was compared with the genome of L. plantarum strain WCFS1. The genome was also annotated, and genes related to virulence factors were searched for. The results suggest that L. plantarum strains APsulloc 331261 and APsulloc 331263 can be considered as potential beneficial strains for human and animal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412. https://doi.org/10.1093/jn/125.6.1401

    Article  CAS  PubMed  Google Scholar 

  2. FAO/WHO (2002) Food and agriculture organization and World Health Organization. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a joint FAO/WHO Expert Consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria.

  3. Wassenaar TM, Klein G (2008) Safety aspects and implications of regulation of probiotic b acteria in food and food supplements. J Food Prot 71(8):1734–1741. https://doi.org/10.4315/0362-028x-71.8.1734

    Article  PubMed  Google Scholar 

  4. Pineiro M, Stanton C (2007) Probiotic bacteria: legislative framework— requirements to evidence basis. J Nutr 137(3):850S–853S. https://doi.org/10.1093/jn/137.3.850S

    Article  CAS  PubMed  Google Scholar 

  5. Spano G, Russo P, Lonvaud-Funel A, Lucas P, Alexandre H, Grandvalet C (2010) Biogenic amines in fermented foods. Eur J Clin Nutr 64:95–100. https://doi.org/10.1038/ejcn.2010.218

    Article  CAS  Google Scholar 

  6. Van Bokhorst-van de Veen H, Lee I, Marco ML, Wels M, Bron PA, Kleerebezem M (2012) Modulation of Lactobacillus plantarum gastrointestinal robustness by fermentation conditions enables identification of bacterial robustness markers. PLoS One 7(7):e39053. https://doi.org/10.1371/journal.pone.0039053

    Article  CAS  Google Scholar 

  7. Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84(3):197–215. https://doi.org/10.1016/s0168-1656(00)00375-8

    Article  CAS  PubMed  Google Scholar 

  8. Siezen RJ, van Hylckama Vlieg JET (2011) Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microb Cell Factories 10(Suppl1):S3. https://doi.org/10.1186/1475-2859-10-S1-S3

    Article  Google Scholar 

  9. Molenaar D, Bringel F, Schuren FH, de Vos WM, Siezen RJ, Kleerebezem M (2005) Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol 187:6119–6127. https://doi.org/10.1128/JB.187.17.6119-6127.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Canchaya C, Claesson MJ, Fitzgerald GF, Sinderen DV, O'Toole PW (2006) Diversity of the genus Lactobacillus revealed by comparative genomics of five species. Microbiology 152(11):3185–3196. https://doi.org/10.1099/mic.0.29140-0

    Article  CAS  PubMed  Google Scholar 

  11. Todorov SD, Franco BDGM (2010) Lactobacillus plantarum: characterization of the species and application in food production. Food Rev Int 26(3):205–229. https://doi.org/10.1080/87559129.2010.484113

    Article  CAS  Google Scholar 

  12. Siezen RJ, Tzeneva VA, Castioni A, Wels M, Phan HT et al (2010) Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ Microbiol 12:758–773. https://doi.org/10.1111/j.1462-2920.2009.02119.x

    Article  CAS  PubMed  Google Scholar 

  13. Guidone A, Zotta T, Ross RP, Stanton C, Rea MC, Parente E, Ricciardi A (2014) Functional properties of Lactobacillus plantarum strains: a multivariate screening study. LWT-Food Sci Technol 56:69–76. https://doi.org/10.1016/j.lwt.2013.10.036

    Article  CAS  Google Scholar 

  14. De Vries MC, Vaughan EE, Kleerebezem M, de Vos WM (2006) Lactobacillus plantarum - survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J 16:1018–1028. https://doi.org/10.1016/j.idairyj.2005.09.003

    Article  CAS  Google Scholar 

  15. Molin G (2001) Probiotic in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v. Am J Clin Nutr 73:380–385. https://doi.org/10.1093/ajcn/73.2.380s

    Article  Google Scholar 

  16. Ricciardi A, Parente E, Guidone A, Ianniello RG, Zotta T, Sayem SA, Varcamonti M (2012) Genotypic diversity of stress response in Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus. Int J Food Microbiol 157(2):278–285. https://doi.org/10.1016/j.ijfoodmicro.2012.05.018

    Article  PubMed  Google Scholar 

  17. Lim J, Yoon S, Tan P, Yang S, Kim S, Park H (2018) Probiotic properties of Lactobacillus plantarum LRCC5193, a plant-origin lactic acid bacterium isolated from kimchi and its use in chocolates. J Food Sci 83(11):2802–2811

    Article  CAS  Google Scholar 

  18. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100:1990–1995. https://doi.org/10.1073/pnas.0337704100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Halebian S, Harris B, Finegold SM, Rolfe RD (1981) Rapid method that aids in distinguishing gram-positive from gram-negative anaerobic bacteria. J Clin Microbiol 13:444–448

    Article  CAS  Google Scholar 

  20. Rudzki L, Ostrowska L, Pawlak D, Małus A, Pawlak K, Waszkiewicz N, Szulc A (2019) Probiotic Lactobacillus plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: a double-blind, randomized, placebo-controlled study. Psychoneuroendocrinol 100:213–222. https://doi.org/10.1016/j.psyneuen.2018.10.010

    Article  CAS  Google Scholar 

  21. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  22. Ji Y, Kim H, Park H, Lee J, Lee H, Shin H, Holzapfel WH (2013) Functionality and safety of lactic bacterial strains from Korean kimchi. Food Control 31(2):467–473. https://doi.org/10.1016/j.foodcont.2012.10.034

    Article  CAS  Google Scholar 

  23. Bover-Cid S, Holzapfel WH (1999) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 53(1):33–41. https://doi.org/10.1016/S0168-1605(99)00152-X

    Article  CAS  PubMed  Google Scholar 

  24. Klare I, Konstabel C, Muller-Bertling S, Reissbrodt R, Huys G, Vancanneyt M, Witte W (2005) Evaluation of new broth media for microdilution antibiotic susceptibility testing of lactobacilli, pediococci, lactococci, and bifidobacteria. Appl Environ Microbiol 71(12):8982–8986. https://doi.org/10.1128/AEM.71.12.8982-8986.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. EFSA (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10(6). https://doi.org/10.2903/j.efsa.2012.2740

  26. Bengoa AA, Zavala L, Carasi P, Trejo SA, Bronsoms S, Serradell MD, Abraham AG (2018) Simulated gastrointestinal conditions increase adhesion ability of Lactobacillus paracasei strains isolated from kefir to Caco-2 cells and mucin. Food Res Int 103:462–467. https://doi.org/10.1016/j.foodres.2017.09.093

    Article  CAS  PubMed  Google Scholar 

  27. Besemer J (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29(12):2607–2618. https://doi.org/10.1093/nar/29.12.2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Coleman-Derr D, Chen G, Gu YQ (2015) OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 43(W1):W78–W84. https://doi.org/10.1093/nar/gkv487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Overbeek R (2008) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Version 2.0. BMC Genomics. http://rast.theseed.org/FIG/rast.cgi.

  30. UniProt Consortium (2018) UniProt: the universal protein knowledgebase. Nucleic Acids Res 46:2699 https://www.uniprot.org.

    Article  Google Scholar 

  31. Xiang Z (2006) Advances in homology protein structure modeling. Curr Protein Pept Sci 7(3):217–227

    Article  CAS  Google Scholar 

  32. Bristo F, Stuart-Edwards M, Knox N, Matthews T, Petkau A (2016) Gview Server Version v3. https://server.gview.ca.

  33. Shiling L, Caihong J, Xinglian X, Chengjian X, Kaixiong L, Ruihua S (2016) Improved screening procedure for biogenic amine production by lactic acid bacteria and enterobacteria. Czech J Food Sci 33(1): 19-26. https://doi.org/10.17221/197/2014-CJFS

  34. Russo P, Capozzi V, Spano G, Corbo MR, Sinigaglia M, Bevilacqua A (2016) Metabolites of microbial origin with an impact on health: ochratoxin A and biogenic amines. Front Microbiol 7:482. https://doi.org/10.3389/fmicb.2016.00482

    Article  PubMed  PubMed Central  Google Scholar 

  35. Moracanin SV, Stefanovic S, Radicevic T, Borovic B, Djukic D (2015) Production of biogenic amines by lactic acid bacteria isolated from Uzicka sausages. Procedia Food Sci 5:308–311. https://doi.org/10.1016/j.profoo.2015.09.068

    Article  Google Scholar 

  36. Arena M, Nadra MM (2001) Biogenic amine production by Lactobacillus. Appl Microbiol 90(2):158–162. https://doi.org/10.1046/j.1365-2672.2001.01223.x

    Article  CAS  Google Scholar 

  37. Straub BW, Kicherer M, Schilcher SM, Hammes WP (1995) The formation of biogenic amines by fermentation organisms. Zeitschrift für Lebensmittel- Untersuchung und -Forschung 201(1):79–82

    Article  CAS  Google Scholar 

  38. Capozzi V, Russo P, Ladero V, Fernández M, Fiocco D, Alvarez MA, Spano G (2012) Biogenic amines degradation by Lactobacillus plantarum: toward a potential application in wine. Front Microbiol 3 / article 122. https://doi.org/10.3389/fmicb.2012.00122

  39. Zhang Q, Lin S, Nie X (2013) Reduction of biogenic amine accumulation in silver carp sausage by an amine-negative Lactobacillus plantarum. Food Control 32(2):496–500. https://doi.org/10.1016/j.foodcont.2013.01.029

    Article  CAS  Google Scholar 

  40. Halász A, Baráth Ă, Holzapfel WH (1999) The influence of starter culture selection on sauerkraut fermentation. Z Lebensm Unters Forsch 208:434–438. https://doi.org/10.1007/s002170050443

    Article  Google Scholar 

  41. Carelli D, Centonze D, Palermo C, Quinto M, Rotunno T (2007) An interference free amperometric biosensor for the detection of biogenic amines in food products. Biosens Bioelectron 23(5):640–647. https://doi.org/10.1016/j.bios.2007.07.008

    Article  CAS  PubMed  Google Scholar 

  42. Pavli FG, Argyri AA, Papadopoulou OS (2016) Probiotic potential of lactic acid bacteria from traditional fermented dairy and meat products: assessment by in vitro tests and molecular characterization. J Probiot Health 04:3. https://doi.org/10.4172/2329-8901.1000157

    Article  CAS  Google Scholar 

  43. Hummel AS, Hertel C, Holzapfel WH, Franz CMAP (2007) Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl Environ Microbiol 73:730–739. https://doi.org/10.1128/AEM.02105-06

    Article  CAS  PubMed  Google Scholar 

  44. Gueimonde M, Sánchez B, Reyes-Gavilán CG, Margolles A (2013). Antibiotic resistance in probiotic bacteria. Front Microbiol 4 / Article 202. https://doi.org/10.3389/fmicb.2013.00202

  45. Vesa T, Pochart P, Marteau P (2000) Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG 1363 in the human gastrointestinal tract. Aliment Pharm Ther 14(6):823–828. https://doi.org/10.1046/j.1365-2036.2000.00763.x

    Article  CAS  Google Scholar 

  46. Gheziel C, Russo P, Arena MP, Spano G, Ouzari H, Kheroua O, Capozzi V (2018) Evaluating the probiotic potential of Lactobacillus plantarum strains from Algerian infant feces: towards the design of probiotic starter cultures tailored for developing countries. Probiot Antimicrob Prot 11(1):113–123. https://doi.org/10.1007/s12602-018-9396-9

    Article  CAS  Google Scholar 

  47. Li Y, Liu T, Zhao M, Zhong H, Luo W, Feng F (2019) In vitro and in vivo investigations of probiotic properties of lactic acid bacteria isolated from Chinese traditional sourdough. Appl Microbiol Biotechnol 103(4):1893–1903. https://doi.org/10.1007/s00253-018-9554-8

    Article  CAS  PubMed  Google Scholar 

  48. ´49. Pretzer G, Snel J, Molenaar D, Wiersma A, Bron PA, Lambert J et al (2005) Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J Bacteriol 187:6128–6136. https://doi.org/10.1128/JB.187.17.6128-6136.2005

  49. Fitch WM (1970) Distinguishing homologous from analogous proteins. Syst Zool 19(2):99. https://doi.org/10.2307/2412448

    Article  CAS  PubMed  Google Scholar 

  50. Todorov SD, Perin LM, Carneiro BM, Rahal P, Holzapfel W, Nero LA (2017) Safety of Lactobacillus plantarum ST8Sh and its bacteriocin. Probiot Antimicrob Prot 9(3):334–344. https://doi.org/10.1007/s12602-017-9260-3

    Article  CAS  Google Scholar 

  51. Waters CM, Wells CL, Dunny GM (2003) The aggregation domain of aggregation substance, not the RGD motifs, is critical for efficient internalization by HT-29 enterocytes. Infect Immun 71(10):5682–5689. https://doi.org/10.1128/iai.71.10.5682-5689.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Galli D, Lottspeich F, Wirth R (1990) Sequence analysis of Enterococcus faecalis aggregation substance encoded by the sex pheromone plasmid pAD1. Mol Microbiol 4:895–904. https://doi.org/10.1111/j.1365-2958.1990.tb00662.x

    Article  CAS  PubMed  Google Scholar 

  53. Thumu SC, Halami PM (2012) Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Antonie Van Leeuwenhoek 102(4):541–551. https://doi.org/10.1007/s10482-012-9749-4

    Article  CAS  PubMed  Google Scholar 

  54. Ammor MS, Gueimonde M, Danielsen M, Zagorec M, Van Hoek AHAM, Reyes-Gavilan CG, Margolles A (2008) Two different tetracycline resistance mechanisms, plasmid-carried tet(L) and chromosomally located transposon-associated tet(M), coexist in Lactobacillus sakei Rits 9. Appl Environ Microbiol 74(5):1394–1401. https://doi.org/10.1128/AEM.01463-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wassenaar TM, Gunzer F (2015) The prediction of virulence based on presence of virulence genes in E. coli may not always be accurate. Gut Pathog 7(1):15. https://doi.org/10.1186/s13099-015-0062-4

  56. Singh KS, Choudhary R, Bish S, Grover S, Kumar S, Mohanty AK, Kaushik JK (2017) Expression of recombinant truncated domains of mucus-binding (Mub) protein of Lactobacillus plantarum in soluble and biologically active form. Protein Expr Purif 135:54–60. https://doi.org/10.1016/j.pep.2017.04.015

    Article  CAS  PubMed  Google Scholar 

  57. MacKenzie D, Jeffers F, Parker M, Vibert-Vallet A, Bongaerts R, Roos S, Walter J, Juge N (2010) Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri. Microbiol 156(11):3368–3378. https://doi.org/10.1099/mic.0.043265-0

    Article  CAS  Google Scholar 

  58. Van Tassell M, Miller M (2011) Lactobacillus adhesion to mucus. Nutrients 3(5):613–636. https://doi.org/10.3390/nu3050613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roos S, Jonsson H (2002) A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiol 148(2):433–442. https://doi.org/10.1099/00221287-148-2-433

    Article  CAS  Google Scholar 

  60. Blumenthal T, Landers T, Weber K (1972) Bacteriophage Q replicase contains the protein biosynthesis elongation factors EF Tu and EF Ts. Proc Natl Acad Sci 69(5):1313–1317. https://doi.org/10.1073/pnas.69.5.1313

    Article  CAS  PubMed  Google Scholar 

  61. Georgiou T, Yu Y, Ekunwe S, Buttner M, Zuurmond A, Kraal B (1998) Specific peptide-activated proteolytic cleavage of Escherichia coli elongation factor Tu. Proc Natl Acad Sci 95(6):2891–2895. https://doi.org/10.1073/pnas.95.6.2891

    Article  CAS  PubMed  Google Scholar 

  62. Barrangou R, Marraffini L (2014) CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54(2):234–244. https://doi.org/10.1016/j.molcel.2014.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Klumpp J, Fouts DE, Sozhamannan S (2012) Next generation sequencing technologies and the changing landscape of phage genomics. Bacteriophage 2(3):190–199. https://doi.org/10.4161/bact.22111

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Amore Pacific Corporation, Seoul, South Korea, and HEM, Pohang, South Korea. Support from the Bio&Medical Technology Program of the Korean National Research Foundation (NRF) (No. 2016M3A9A5923160) is gratefully acknowledged. 

Funding

This study received financial support from the National Council on Science and Technology, CONACYT, Mexico, DF, Mexico by providing financial support to KA, involved in the present project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Heinrich Holzapfel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arellano, K., Vazquez, J., Park, H. et al. Safety Evaluation and Whole-Genome Annotation of Lactobacillus plantarum Strains from Different Sources with Special Focus on Isolates from Green Tea. Probiotics & Antimicro. Prot. 12, 1057–1070 (2020). https://doi.org/10.1007/s12602-019-09620-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-019-09620-y

Keywords

Navigation