Use of Fecal Slurry Cultures to Study In Vitro Effects of Bacteriocins on the Gut Bacterial Populations of Infants

Abstract

Bacteriocins are antimicrobial peptides produced by bacteria to compete with other bacteria for nutrients and ecological niches. The antimicrobial effect of these peptides on the bacterial populations in the gut is likely dynamic as the survival of the microbes in this environment depends on both competition and cooperation. In this study, we evaluated four different bacteriocins from lactic acid bacteria (LAB): nisin, enterocin A (EntA), enterocin K1 (EntK1), and garvicin ML (GarML), which have different inhibition spectra and physicochemical properties. The bacteriocins were tested in vitro using fecal slurry batch cultures from infants. The abundances of some bacterial populations in the cultures were determined using quantitative PCR (qPCR) and the metabolic activity of the gut microbiota was assessed by measuring the production of short-chain fatty acids (SCFA) using gas chromatography. The effects of the bacteriocins correlated well with their antimicrobial spectra and the administered concentrations. Nisin and GarML, with broad antimicrobial spectra, shifted the abundance of several intestinal bacterial groups, while EntA and EntK1, with relative narrower inhibition spectra, showed no or little effect. Moreover, the results from the SCFA analysis were consistent with changes obtained in the bacterial composition. In particular, a reduction in acetate concentration was observed in the samples with low abundance of Bifidobacterium, which is a well-known acetate producer. The variability imposed on the intestinal bacterial populations by the different bacteriocins tested suggests that this type of antimicrobials have great potential to modulate the gut microbiota for medical purposes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Collado MC, Cernada M, Bäuerl C et al (2012) Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes 3:352–365

    Article  Google Scholar 

  2. 2.

    Nogacka AM, Salazar N, Arboleya S, Suárez M, Fernández N, Solís G, Reyes-Gavilán CG, Gueimonde M (2017) Early microbiota, antibiotics and health. Cell Mol Life Sci 75:83–91. https://doi.org/10.1007/s00018-017-2670-2

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Wopereis H, Oozeer R, Knipping K et al (2014) The first thousand days - intestinal microbiology of early life: establishing a symbiosis. Pediatr Allergy Immunol 25:428–438. https://doi.org/10.1111/pai.12232

    Article  Google Scholar 

  4. 4.

    Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7:185. https://doi.org/10.3389/fmicb.2016.00185

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Chassard C, Lacroix C (2013) Carbohydrates and the human gut microbiota. Curr Opin Clin Nutr Metab Care 16:453–460. https://doi.org/10.1097/MCO.0b013e3283619e63

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Zheng J, Ruan L, Gänzle MG, Sun M (2015) Diversity and dynamics of bacteriocins from human microbiome. Environ Microbiol 17:2133–2143. https://doi.org/10.1111/1462-2920.12662

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Nes IF, Yoon S-S, Diep DB (2007) Ribosomally synthesized antimicrobial peptides (bacteriocins) in lactic acid bacteria: a review. Food Sci Biotechnol 16:675–690

    CAS  Google Scholar 

  8. 8.

    Dobson A, Cotter PD, Paul Ross R, Hill C (2012) Bacteriocin production: a probiotic trait? Appl Environ Microbiol 78:1–6. https://doi.org/10.1128/AEM.05576-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP (2016) Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100:2939–2951. https://doi.org/10.1007/s00253-016-7343-9

  10. 10.

    Delves-Broughton J (1996) Applications of the bacteriocin, nisin. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 69:193–202. https://doi.org/10.1007/BF00399424

    CAS  Article  Google Scholar 

  11. 11.

    Lubelski J, Rink R, Khusainov R, Moll GN, Kuipers OP (2008) Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci 65:455–476. https://doi.org/10.1007/s00018-007-7171-2

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Le Blay G, Lacroix C, Zihler A, Fliss I (2007) In vitro inhibition activity of nisin A, nisin Z, pediocin PA-1 and antibiotics against common intestinal bacteria. Lett Appl Microbiol 45:252–257. https://doi.org/10.1111/j.1472-765X.2007.02178.x

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Aymerich T, Garriga M, Ylla J, et al (2000) Application of enterocins as biopreservatives against Listeria innocua in meat products 63:721–726.

  14. 14.

    Borrero J, Brede D a, Skaugen M et al (2011) Characterization of garvicin ML, a novel circular bacteriocin produced by Lactococcus garvieae DCC43, isolated from mallard ducks (Anas platyrhynchos). Appl Environ Microbiol 77:369–373. https://doi.org/10.1128/AEM.01173-10

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Ovchinnikov KV, Kristiansen PE, Uzelac G, Topisirovic L, Kojic M, Nissen-Meyer J, Nes IF, Diep DB (2014) Defining the structure and receptor binding domain of the leaderless bacteriocin LsbB. J Biol Chem 289:23838–23845. https://doi.org/10.1074/jbc.M114.579698

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Umu ÖCO, Bäuerl C, Oostindjer M et al (2016) The potential of class II bacteriocins to modify gut microbiota to improve host health. PLoS One:1–22. https://doi.org/10.1371/journal.pone.0164036

  17. 17.

    Cintas LM, Casaus P, Håvarstein LS et al (1997) Biochemical and genetic characterization of enterocin P , a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Microbiol Microbiol 63:4321–4330

    CAS  Article  Google Scholar 

  18. 18.

    Arboleya S, Salazar N, Solís G et al (2013) Assessment of intestinal microbiota modulation ability of Bifidobacterium strains in in vitro fecal batch cultures from preterm neonates. Anaerobe 19:9–16. https://doi.org/10.1016/j.anaerobe.2012.11.001

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Arboleya S, Binetti A, Salazar N et al (2012) Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol 79:763–772. https://doi.org/10.1111/j.1574-6941.2011.01261.x

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Denman SE, McSweeney CS (2006) Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 58:572–582. https://doi.org/10.1111/j.1574-6941.2006.00190.x

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Valdés-Varela L, Hernndez-Barranco AM, Ruas-Madiedo P, Gueimonde M (2016) Effect of Bifidobacterium upon Clostridium difficile growth and toxicity when co-cultured in different prebiotic substrates. Front Microbiol 7:1–9. https://doi.org/10.3389/fmicb.2016.00738

  22. 22.

    Salazar N, Gueimonde M, Hernández-Barranco AM, Ruas-Madiedo P, de los Reyes-Gavilán C (2008) Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria. Appl Environ Microbiol 74:4737–4745. https://doi.org/10.1128/AEM.00325-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Kommineni S, Bretl DJ, Lam V et al (2015) Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature. https://doi.org/10.1038/nature15524

  24. 24.

    Quereda JJ, Dussurget O, Nahori M et al (2016) Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection:1–6. https://doi.org/10.1073/pnas.1523899113

  25. 25.

    Mills S, Ross RP, Hill C (2017) Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. 129–153. https://doi.org/10.1093/femsre/fux022

  26. 26.

    Martínez B, García P, Rodríguez A (2019) Swapping the roles of bacteriocins and bacteriophages in food biotechnology. Curr Opin Biotechnol 56:1–6. https://doi.org/10.1016/j.copbio.2018.07.007

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Urokawa KK, Toh TI, Uwahara TK et al (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181. https://doi.org/10.1093/dnares/dsm018

    CAS  Article  Google Scholar 

  28. 28.

    Lozupone C a, Stombaugh JI, Gordon JI et al (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230. https://doi.org/10.1038/nature11550

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Palmer C, Bik EM, DiGiulio DB et al (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:1556–1573. https://doi.org/10.1371/journal.pbio.0050177

    CAS  Article  Google Scholar 

  30. 30.

    Le Lay C, Fernandez B, Hammami R et al (2015) On Lactococcus lactis UL719 competitivity and nisin (Nisaplin®) capacity to inhibit Clostridium difficile in a model of human colon. Front Microbiol 6:1–8. https://doi.org/10.3389/fmicb.2015.01020

    Article  Google Scholar 

  31. 31.

    Bernbom N, Licht TR, Brogren C et al (2006) Effects of Lactococcus lactis on composition of intestinal microbiota : role of nisin. Society 72:239–244. https://doi.org/10.1128/AEM.72.1.239

    CAS  Article  Google Scholar 

  32. 32.

    Eijsink VGH, Axelsson L, Diep DB et al (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 81:639–654. https://doi.org/10.1023/A:1020582211262

    CAS  Article  Google Scholar 

  33. 33.

    Drider D, Fimland G, Héchard Y, McMullen L, Prévost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582. https://doi.org/10.1128/MMBR.00016-05

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Cotter PD, RPR CH (2005) Bacteriocins: developing innate immunity for food. 3:777–788. https://doi.org/10.1038/nrmicro1240

  35. 35.

    Parada JL, Caron CR, Medeiros ABP, Soccol CR (2007) Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz Arch Biol Technol 50:521–542. https://doi.org/10.1590/S1516-89132007000300018

    CAS  Article  Google Scholar 

  36. 36.

    Dobson A, Crispie F, Rea MC, O'Sullivan O, Casey PG, Lawlor PG, Cotter PD, Ross P, Gardiner GE, Hill C (2011) Fate and efficacy of lacticin 3147-producing Lactococcus lactis in the mammalian gastrointestinal tract. FEMS Microbiol Ecol 76:602–614. https://doi.org/10.1111/j.1574-6941.2011.01069.x

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108(Suppl):4578–4585. https://doi.org/10.1073/pnas.1000081107

    Article  PubMed  Google Scholar 

  38. 38.

    Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547. https://doi.org/10.1038/nature09646

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lars-Gustav Snipen for his advices on statistics.

Funding

OCOU was supported by a strategic scholarship program to food science research, from Norwegian University of Life Sciences (NMBU) (project 1205051025), and she has currently a postdoctoral position funded by Research Council of Norway. NS was the recipient of a “Clarín” postdoctoral contract (Marie Curie European CoFund Program) cofounded by the “Plan Regional de Investigación” of Principado de Asturias and she is currently the recipient of a postdoctoral contract awarded by the Fundación para la Investigación Biosanitaria de Asturias (FINBA). Travels and stays in Spain and Norway for this study were supported by EEA Coordinated Mobility of Researchers NILS Science and Sustainability Project 017-CM-01-2013.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Özgün C. O. Umu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The study was approved by the Regional Ethical Committee of Asturias Public Health Service (SESPA).

Informed Consent

Informed consent was obtained from the parents of all individual participant infants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1
figure3

Molar concentrations of butyrate and isobutyrate in the fecal slurry cultures. Panels represents butyrate (A) and isobutyrate (B). Time points were shown with 0, reference time point zero after stabilization (shown in pink); 24 h, after 24-hour incubation; and 48 h, after 48-hour incubation. Concentrations of the bacteriocins in the treatments were indicated with 0, no bacteriocin addition; 10, 10 μg/mL of bacteriocin added; and 50, 50 μg/mL of bacteriocin added. The color of the data points represents donors: red rectangle, Donor-1; green rectangle, Donor-2; and blue rectangle, Donor-3. The data points from donor-2 and donor-3 overlap at the values of zero. CON, positive control; EntA, Enterocin A; EntK1, Enterocin K1; and GarML, Garvicin (PNG 4383 kb)

High resolution image (TIF 8485 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Umu, Ö.C.O., Gueimonde, M., Oostindjer, M. et al. Use of Fecal Slurry Cultures to Study In Vitro Effects of Bacteriocins on the Gut Bacterial Populations of Infants. Probiotics & Antimicro. Prot. 12, 1218–1225 (2020). https://doi.org/10.1007/s12602-019-09614-w

Download citation

Keywords

  • Gut bacteria
  • Bacteriocins
  • Nisin
  • Enterocin A
  • Enterocin K1
  • Garvicin ML