Use of Fecal Slurry Cultures to Study In Vitro Effects of Bacteriocins on the Gut Bacterial Populations of Infants

  • Özgün C. O. UmuEmail author
  • Miguel Gueimonde
  • Marije Oostindjer
  • Kirill V. Ovchinnikov
  • Clara G. de los Reyes-Gavilán
  • Sara Arbulu
  • Pablo E. Hernández
  • Beatriz Martínez
  • Dzung B. Diep
  • Nuria Salazar


Bacteriocins are antimicrobial peptides produced by bacteria to compete with other bacteria for nutrients and ecological niches. The antimicrobial effect of these peptides on the bacterial populations in the gut is likely dynamic as the survival of the microbes in this environment depends on both competition and cooperation. In this study, we evaluated four different bacteriocins from lactic acid bacteria (LAB): nisin, enterocin A (EntA), enterocin K1 (EntK1), and garvicin ML (GarML), which have different inhibition spectra and physicochemical properties. The bacteriocins were tested in vitro using fecal slurry batch cultures from infants. The abundances of some bacterial populations in the cultures were determined using quantitative PCR (qPCR) and the metabolic activity of the gut microbiota was assessed by measuring the production of short-chain fatty acids (SCFA) using gas chromatography. The effects of the bacteriocins correlated well with their antimicrobial spectra and the administered concentrations. Nisin and GarML, with broad antimicrobial spectra, shifted the abundance of several intestinal bacterial groups, while EntA and EntK1, with relative narrower inhibition spectra, showed no or little effect. Moreover, the results from the SCFA analysis were consistent with changes obtained in the bacterial composition. In particular, a reduction in acetate concentration was observed in the samples with low abundance of Bifidobacterium, which is a well-known acetate producer. The variability imposed on the intestinal bacterial populations by the different bacteriocins tested suggests that this type of antimicrobials have great potential to modulate the gut microbiota for medical purposes.


Gut bacteria Bacteriocins Nisin Enterocin A Enterocin K1 Garvicin ML 



We thank Lars-Gustav Snipen for his advices on statistics.


OCOU was supported by a strategic scholarship program to food science research, from Norwegian University of Life Sciences (NMBU) (project 1205051025), and she has currently a postdoctoral position funded by Research Council of Norway. NS was the recipient of a “Clarín” postdoctoral contract (Marie Curie European CoFund Program) cofounded by the “Plan Regional de Investigación” of Principado de Asturias and she is currently the recipient of a postdoctoral contract awarded by the Fundación para la Investigación Biosanitaria de Asturias (FINBA). Travels and stays in Spain and Norway for this study were supported by EEA Coordinated Mobility of Researchers NILS Science and Sustainability Project 017-CM-01-2013.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The study was approved by the Regional Ethical Committee of Asturias Public Health Service (SESPA).

Informed Consent

Informed consent was obtained from the parents of all individual participant infants included in the study.

Supplementary material

12602_2019_9614_Fig3_ESM.png (4.3 mb)
Fig. S1

Molar concentrations of butyrate and isobutyrate in the fecal slurry cultures. Panels represents butyrate (A) and isobutyrate (B). Time points were shown with 0, reference time point zero after stabilization (shown in pink); 24 h, after 24-hour incubation; and 48 h, after 48-hour incubation. Concentrations of the bacteriocins in the treatments were indicated with 0, no bacteriocin addition; 10, 10 μg/mL of bacteriocin added; and 50, 50 μg/mL of bacteriocin added. The color of the data points represents donors: red rectangle, Donor-1; green rectangle, Donor-2; and blue rectangle, Donor-3. The data points from donor-2 and donor-3 overlap at the values of zero. CON, positive control; EntA, Enterocin A; EntK1, Enterocin K1; and GarML, Garvicin (PNG 4383 kb)

12602_2019_9614_MOESM1_ESM.tif (1.3 mb)
High resolution image (TIF 8485 kb)


  1. 1.
    Collado MC, Cernada M, Bäuerl C et al (2012) Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes 3:352–365CrossRefGoogle Scholar
  2. 2.
    Nogacka AM, Salazar N, Arboleya S, Suárez M, Fernández N, Solís G, Reyes-Gavilán CG, Gueimonde M (2017) Early microbiota, antibiotics and health. Cell Mol Life Sci 75:83–91. CrossRefPubMedGoogle Scholar
  3. 3.
    Wopereis H, Oozeer R, Knipping K et al (2014) The first thousand days - intestinal microbiology of early life: establishing a symbiosis. Pediatr Allergy Immunol 25:428–438. CrossRefPubMedGoogle Scholar
  4. 4.
    Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7:185. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chassard C, Lacroix C (2013) Carbohydrates and the human gut microbiota. Curr Opin Clin Nutr Metab Care 16:453–460. CrossRefPubMedGoogle Scholar
  6. 6.
    Zheng J, Ruan L, Gänzle MG, Sun M (2015) Diversity and dynamics of bacteriocins from human microbiome. Environ Microbiol 17:2133–2143. CrossRefPubMedGoogle Scholar
  7. 7.
    Nes IF, Yoon S-S, Diep DB (2007) Ribosomally synthesized antimicrobial peptides (bacteriocins) in lactic acid bacteria: a review. Food Sci Biotechnol 16:675–690Google Scholar
  8. 8.
    Dobson A, Cotter PD, Paul Ross R, Hill C (2012) Bacteriocin production: a probiotic trait? Appl Environ Microbiol 78:1–6. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP (2016) Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100:2939–2951. CrossRefGoogle Scholar
  10. 10.
    Delves-Broughton J (1996) Applications of the bacteriocin, nisin. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 69:193–202. CrossRefGoogle Scholar
  11. 11.
    Lubelski J, Rink R, Khusainov R, Moll GN, Kuipers OP (2008) Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci 65:455–476. CrossRefPubMedGoogle Scholar
  12. 12.
    Le Blay G, Lacroix C, Zihler A, Fliss I (2007) In vitro inhibition activity of nisin A, nisin Z, pediocin PA-1 and antibiotics against common intestinal bacteria. Lett Appl Microbiol 45:252–257. CrossRefPubMedGoogle Scholar
  13. 13.
    Aymerich T, Garriga M, Ylla J, et al (2000) Application of enterocins as biopreservatives against Listeria innocua in meat products 63:721–726.Google Scholar
  14. 14.
    Borrero J, Brede D a, Skaugen M et al (2011) Characterization of garvicin ML, a novel circular bacteriocin produced by Lactococcus garvieae DCC43, isolated from mallard ducks (Anas platyrhynchos). Appl Environ Microbiol 77:369–373. CrossRefPubMedGoogle Scholar
  15. 15.
    Ovchinnikov KV, Kristiansen PE, Uzelac G, Topisirovic L, Kojic M, Nissen-Meyer J, Nes IF, Diep DB (2014) Defining the structure and receptor binding domain of the leaderless bacteriocin LsbB. J Biol Chem 289:23838–23845. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Umu ÖCO, Bäuerl C, Oostindjer M et al (2016) The potential of class II bacteriocins to modify gut microbiota to improve host health. PLoS One:1–22. CrossRefGoogle Scholar
  17. 17.
    Cintas LM, Casaus P, Håvarstein LS et al (1997) Biochemical and genetic characterization of enterocin P , a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Microbiol Microbiol 63:4321–4330Google Scholar
  18. 18.
    Arboleya S, Salazar N, Solís G et al (2013) Assessment of intestinal microbiota modulation ability of Bifidobacterium strains in in vitro fecal batch cultures from preterm neonates. Anaerobe 19:9–16. CrossRefPubMedGoogle Scholar
  19. 19.
    Arboleya S, Binetti A, Salazar N et al (2012) Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol 79:763–772. CrossRefPubMedGoogle Scholar
  20. 20.
    Denman SE, McSweeney CS (2006) Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 58:572–582. CrossRefPubMedGoogle Scholar
  21. 21.
    Valdés-Varela L, Hernndez-Barranco AM, Ruas-Madiedo P, Gueimonde M (2016) Effect of Bifidobacterium upon Clostridium difficile growth and toxicity when co-cultured in different prebiotic substrates. Front Microbiol 7:1–9.
  22. 22.
    Salazar N, Gueimonde M, Hernández-Barranco AM, Ruas-Madiedo P, de los Reyes-Gavilán C (2008) Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria. Appl Environ Microbiol 74:4737–4745. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kommineni S, Bretl DJ, Lam V et al (2015) Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature. CrossRefGoogle Scholar
  24. 24.
    Quereda JJ, Dussurget O, Nahori M et al (2016) Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection:1–6. CrossRefGoogle Scholar
  25. 25.
    Mills S, Ross RP, Hill C (2017) Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. 129–153. CrossRefGoogle Scholar
  26. 26.
    Martínez B, García P, Rodríguez A (2019) Swapping the roles of bacteriocins and bacteriophages in food biotechnology. Curr Opin Biotechnol 56:1–6. CrossRefPubMedGoogle Scholar
  27. 27.
    Urokawa KK, Toh TI, Uwahara TK et al (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181. CrossRefGoogle Scholar
  28. 28.
    Lozupone C a, Stombaugh JI, Gordon JI et al (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Palmer C, Bik EM, DiGiulio DB et al (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:1556–1573. CrossRefGoogle Scholar
  30. 30.
    Le Lay C, Fernandez B, Hammami R et al (2015) On Lactococcus lactis UL719 competitivity and nisin (Nisaplin®) capacity to inhibit Clostridium difficile in a model of human colon. Front Microbiol 6:1–8. CrossRefGoogle Scholar
  31. 31.
    Bernbom N, Licht TR, Brogren C et al (2006) Effects of Lactococcus lactis on composition of intestinal microbiota : role of nisin. Society 72:239–244. CrossRefGoogle Scholar
  32. 32.
    Eijsink VGH, Axelsson L, Diep DB et al (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 81:639–654. CrossRefGoogle Scholar
  33. 33.
    Drider D, Fimland G, Héchard Y, McMullen L, Prévost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cotter PD, RPR CH (2005) Bacteriocins: developing innate immunity for food. 3:777–788.
  35. 35.
    Parada JL, Caron CR, Medeiros ABP, Soccol CR (2007) Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz Arch Biol Technol 50:521–542. CrossRefGoogle Scholar
  36. 36.
    Dobson A, Crispie F, Rea MC, O'Sullivan O, Casey PG, Lawlor PG, Cotter PD, Ross P, Gardiner GE, Hill C (2011) Fate and efficacy of lacticin 3147-producing Lactococcus lactis in the mammalian gastrointestinal tract. FEMS Microbiol Ecol 76:602–614. CrossRefPubMedGoogle Scholar
  37. 37.
    Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108(Suppl):4578–4585. CrossRefPubMedGoogle Scholar
  38. 38.
    Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Özgün C. O. Umu
    • 1
    Email author
  • Miguel Gueimonde
    • 2
    • 5
  • Marije Oostindjer
    • 1
  • Kirill V. Ovchinnikov
    • 1
  • Clara G. de los Reyes-Gavilán
    • 2
    • 5
  • Sara Arbulu
    • 3
  • Pablo E. Hernández
    • 3
  • Beatriz Martínez
    • 4
  • Dzung B. Diep
    • 1
  • Nuria Salazar
    • 2
    • 5
  1. 1.Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
  2. 2.Department of Microbiology and Biochemistry of Dairy ProductsInstituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC)VillaviciosaSpain
  3. 3.Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de VeterinariaUniversidad Complutense de Madrid (UCM)MadridSpain
  4. 4.Department of Technology and Biotechnology of Dairy ProductsInstituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC)VillaviciosaSpain
  5. 5.Diet, Microbiota, and Health GroupInstituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain

Personalised recommendations