L. plantarum, L. fermentum, and B. breve Beads Modified the Intestinal Microbiota and Alleviated the Inflammatory Response in High-Fat Diet–Fed Mice

  • Qingshen Sun
  • Xinyang Liu
  • Yanyan Zhang
  • Yong Song
  • Xiuyan Ma
  • Yue Shi
  • Xiuliang LiEmail author


This paper aims to study the effects of compound microbe-based beads on changes in the intestinal microbiota and alleviation of high-fat (HF) diet–induced inflammatory responses. Forty-eight mice were fed base chow or a high-fat diet for 4 weeks and then randomly separated into six groups: normal diet (group A), high-fat diet (group B), high-fat positive control (fed with high-fat chow plus Tetrahydrolipstatin, group C), high-fat chow plus B. breve beads (group D), high-fat chow plus L. plantarum-L. fermentum beads (group E), and high-fat chow plus L. plantarum-L. fermentum-B. breve beads (group F). The body weights were measured. The serum cytokine and lipid levels were determined by ELISA, and high-throughput sequence analysis of the fecal microbiota was conducted. Beads with cell encapsulation rates higher than 99% decreased the body weight from 50.97 ± 3.44 g in group B to 42.64 ± 2.63 g in group F at the end of the experiment (p = 0.00019). The total cholesterol content in group F was 80.14 ± 9.37 mmol/L, which was significantly lower than that in group A (96.13 ± 24.07 mmol/L) (p = 0.02765), group B (102.52 ± 12.20 mmol/L) (p = 0.00196), and group C (98.99 ± 11.32 mmol/L) (p = 0.00804). In addition, the serum IL-6 level showed no significant difference between group F and the base chow control group. The microbial cell-loaded bead intervention led to increased abundances of Bifidobacterium and Lactobacillus in mouse feces. Oral administration of three strain-based beads led to alleviation of inflammatory reactions in high-fat diet–fed mice.


Bifidobacterium breve Lactobacillus plantarum Lactobacillus fermentum High-fat diet Inflammatory response Intestinal microbiota 


Funding Information

This work was supported by the Heilongjiang Province Natural Science Foundation of China (C2016049) and Harbin City Technology Bureau Youth Talented Person Project (RC2017QN020010).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Korneychuk N (2014) Composition of the intestinal flora and predisposition to obesity. Med Sci M/s 30:41Google Scholar
  2. 2.
    Yazigi A, Gaborit B, Nogueira JP, Butiler ME, Andreelli F (2008) Role of intestinal flora in insulin resistance and obesity. Presse Med 37:1427–1430CrossRefGoogle Scholar
  3. 3.
    Schoefer L (2015) Intestinal bacteria promotes obesity - new findings on the influence of the intestinal flora on the body-mass-index. Forsch Komplementmed 106:421–421Google Scholar
  4. 4.
    Moran CP, Shanahan F (2014) Gut microbiota and obesity: role in aetiology and potential therapeutic target. Best Pract Res Clin Gastroenterol 28:585–597CrossRefGoogle Scholar
  5. 5.
    Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075. CrossRefGoogle Scholar
  6. 6.
    Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell MD, Wing R, Rittmann BE, Krajmalnik-Brown R (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 106:2365–2370CrossRefGoogle Scholar
  7. 7.
    de La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE (2010) Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 299:G440–G448CrossRefGoogle Scholar
  8. 8.
    Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. CrossRefGoogle Scholar
  9. 9.
    Chiou YS, Lee PS, Pan MH (2018) Food bioactives and their effects on obesity-accelerated inflammatory bowel disease. J Agric Food Chem 66:773–779. CrossRefGoogle Scholar
  10. 10.
    Kondo S, Xiao JZ, Sugahara H, Satoh T, Yaeshima T, Iwatsuki K, Odamaki T, Kamei A, Takahashi S, Abe AK (2010) Antiobesity effects of Bifidobacterium breve strain B-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci Biotechnol Biochem 74:1656–1661. CrossRefGoogle Scholar
  11. 11.
    Moya-Perez A, Neef A, Sanz Y (2015) Bifidobacterium pseudocatenulatum CECT 7765 reduces obesity-associated inflammation by restoring the lymphocyte-macrophage balance and gut microbiota structure in high-fat diet-fed mice. PLoS One 10:e0126976. CrossRefGoogle Scholar
  12. 12.
    Kong LC, Tap J, Aronwisnewsky J, Pelloux V, Basdevant A, Bouillot JL, Zucker JD, Doré J, Clément K (2013) Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr 98:16–24CrossRefGoogle Scholar
  13. 13.
    Wang Y, Xie J, Li Y, Dong S, Liu H, Chen J, Wang Y, Zhao S, Zhang Y, Zhang H (2016) Probiotic Lactobacillus casei Zhang reduces pro-inflammatory cytokine production and hepatic inflammation in a rat model of acute liver failure. Eur J Nutr 55:821–831. CrossRefGoogle Scholar
  14. 14.
    Ahlroos T, Tynkkynen S (2009) Quantitative strain-specific detection of Lactobacillus rhamnosus GG in human faecal samples by real-time PCR. J Appl Microbiol 106:506–514. CrossRefGoogle Scholar
  15. 15.
    Kim DH, Kim H, Jeong D, Kang IB, Chon JW, Kim HS, Song KY, Seo KH (2017) Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobiota: targeted and untargeted community analysis with correlation of biomarkers. J Nutr Biochem 44:35–43. CrossRefGoogle Scholar
  16. 16.
    Li XL, Song Y, Ma XY, Zhang YY, Liu XY, Cheng L, Han DQ, Shi Y, Sun Q, Yang CH, Pan B, Sun QS (2018) Lactobacillus plantarum and Lactobacillus fermentum alone or in combination regulate intestinal flora composition and systemic immunity to alleviate obesity syndrome in high-fat diet rat. Int J Food Sci Technol 53(1):137–146. CrossRefGoogle Scholar
  17. 17.
    Li MY, Jin YX, Wang YW, Meng L, Zhang N, Sun Y, Hao JF, Fu Q, Sun QS (2019) Preparation of Bifidobacterium breve encapsulated in low methoxyl pectin beads and its effects on yogurt quality. J Dairy Sci 102(6):4832–4843. CrossRefGoogle Scholar
  18. 18.
    Sandoval-Castilla O, Lobato-Calleros C, García-Galindo HS, Alvarez-Ramírez J, Vernon-Carter EJ (2010) Textural properties of alginate–pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Res Int 43:111–117. CrossRefGoogle Scholar
  19. 19.
    Oehme A, Valotis A, Krammer G, Zimmermann I, Schreier P (2011) Preparation and characterization of shellac-coated anthocyanin pectin beads as dietary colonic delivery system. Mol Nutr Food Res 55(Suppl 1):S75–S85. CrossRefGoogle Scholar
  20. 20.
    Sandolo C, Pechine S, Le Monnier A, Hoys S, Janoir C, Coviello T, Alhaique F, Collignon A, Fattal E, Tsapis N (2011) Encapsulation of Cwp84 into pectin beads for oral vaccination against Clostridium difficile. Eur J Pharm Biopharm 79:566–573. CrossRefGoogle Scholar
  21. 21.
    Nguyen AT, Winckler P, Loison P, Wache Y, Chambin O (2014) Physico-chemical state influences in vitro release profile of curcumin from pectin beads. Colloids Surf B: Biointerfaces 121:290–298. CrossRefGoogle Scholar
  22. 22.
    Ghibaudo F, Gerbino E, Hugo AA, Simoes MG, Alves P, Costa BFO, Campo Dall' Orto V, Gomez-Zavaglia A, Simoes PN (2018) Development and characterization of iron-pectin beads as a novel system for iron delivery to intestinal cells. Colloids Surf B: Biointerfaces 170:538–543. CrossRefGoogle Scholar
  23. 23.
    Shamekhi F, Shuhaimi M, Ariff A, Manap YA (2013) Cell viability of microencapsulated Bifidobacterium animalis subsp. lactis under freeze-drying, storage and gastrointestinal tract simulation conditions. Folia Microbiol 58:91–101. CrossRefGoogle Scholar
  24. 24.
    Zhao JL, Zhao YY, Zhu WJ (2017) A high-fat, high-protein diet attenuates the negative impact of casein-induced chronic inflammation on testicular steroidogenesis and sperm parameters in adult mice. Gen Comp Endocrinol 252:48–59. CrossRefGoogle Scholar
  25. 25.
    Mashmoul M, Azlan A, Yusof BNM, Khaza'ai H, Mohtarrudin N, Boroushaki MT (2014) Effects of saffron extract and crocin on anthropometrical, nutritional and lipid profile parameters of rats fed a high fat diet. J Funct Foods 8:180–187. CrossRefGoogle Scholar
  26. 26.
    Almeida MA, Nadal JM, Grassiolli S, Paludo KS, Zawadzki SF, Cruz L, Paula JP, Farago PV (2014) Enhanced gastric tolerability and improved anti-obesity effect of capsaicinoids-loaded PCL microparticles. Mater Sci Eng C Mater Biol Appl 40:345–356. CrossRefGoogle Scholar
  27. 27.
    Zhang X, Zhang M, Ho C-T, Guo X, Wu Z, Weng P, Yan M, Cao J (2018) Metagenomics analysis of gut microbiota modulatory effect of green tea polyphenols by high fat diet-induced obesity mice model. J Funct Foods 46:268–277. CrossRefGoogle Scholar
  28. 28.
    Jiménez-Pranteda ML, Pérez-Davó A, Monteoliva-Sánchez M, Ramos-Cormenzana A, Aguilera M (2015) Food omics validation: towards understanding key features for gut microbiota, probiotics and human health. Food Analyt Method 8:272–289CrossRefGoogle Scholar
  29. 29.
    Li C, Ding Q, Nie SP, Zhang YS, Xiong T, Xie MY (2014) Carrot juice fermented with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats. J Agric Food Chem 62(49):11884–11891. CrossRefGoogle Scholar
  30. 30.
    Wu CC, Weng WL, Lai WL, Tsai HP, Liu WH, Lee MH, Tsai YC (2015) Effect of Lactobacillus plantarum strain K21 on high-fat diet-fed obese mice. Evid Based Complement Alternat Med 2015:391767. Google Scholar
  31. 31.
    Zhang W, Liao J, Li H, Dong H, Bai H, Yang A, Hammock BD, Yang GY (2013) Reduction of inflammatory bowel disease-induced tumor development in IL-10 knockout mice with soluble epoxide hydrolase gene deficiency. Mol Carcinog 52:726–738CrossRefGoogle Scholar
  32. 32.
    Zhou Y, Wang H, Liang L, Zhao WC, Chen Y, Deng HZ (2010) Total alkaloids of Sophora alopecuroides increases the expression of CD4+ CD25+ Tregs and IL-10 in rats with experimental colitis. Am J Chin Med 38:265–277CrossRefGoogle Scholar
  33. 33.
    Bouaziz JD, Le Buanec H, Saussine A, Bensussan A, Bagot M (2012) IL-10 producing regulatory b cells in mice and humans: state of the art. Curr Mol Med 12:519–527CrossRefGoogle Scholar
  34. 34.
    Wang L, Lin Q, Yang T, Liang Y, Nie Y, Luo Y, Shen J, Fu X, Tang Y, Luo F (2017) Oryzanol modifies high fat diet-induced obesity, liver gene expression profile, and inflammation response in mice. J Agric Food Chem 65:8374–8385. CrossRefGoogle Scholar
  35. 35.
    Wunderlich CM, Ackermann PJ, Ostermann AL, Adams-Quack P, Vogt MC, Tran ML, Nikolajev A, Waisman A, Garbers C, Theurich S, Mauer J, Hovelmeyer N, Wunderlich FT (2018) Obesity exacerbates colitis-associated cancer via IL-6-regulated macrophage polarisation and CCL-20/CCR-6-mediated lymphocyte recruitment. Nat Commun 9:1646. CrossRefGoogle Scholar
  36. 36.
    Lim SM, Jeong JJ, Woo KH, Han MJ, Kim DH (2016) Lactobacillus sakei OK67 ameliorates high-fat diet-induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression. Nutr Res 36:337–348. CrossRefGoogle Scholar
  37. 37.
    Tanida M, Shen J, Maeda K, Horii Y, Yamano T, Fukushima Y, Nagai K (2008) High-fat diet-induced obesity is attenuated by probiotic strain Lactobacillus paracasei ST11 (NCC2461) in rats. Obes Res Clin Pract 2:I-ii. CrossRefGoogle Scholar
  38. 38.
    Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, Valero R, Raccah D, Vialettes B, Raoult D (2012) Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes 36:817–825. CrossRefGoogle Scholar
  39. 39.
    Zhang Y, Tang K, Deng Y, Chen R, Liang S, Xie H, He Y, Chen Y, Yang Q (2018) Effects of shenling baizhu powder herbal formula on intestinal microbiota in high-fat diet-induced NAFLD rats. Biomed Pharmacother 102:1025–1036. CrossRefGoogle Scholar
  40. 40.
    Yuan H, Shi F, Meng L, Wang W (2018) Effect of sea buckthorn protein on the intestinal microbial community in streptozotocin-induced diabetic mice. Int J Biol Macromol 107:1168–1174. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering Research Center of Agricultural Microbiology Technology, Ministry of EducationHeilongjiang UniversityHarbinChina
  2. 2.Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life SciencesHeilongjiang UniversityHarbinChina
  3. 3.Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life SciencesHeilongjiang UniversityHarbinChina

Personalised recommendations