Oxygen-Limiting Growth Conditions and Deletion of the Transition State Regulator Protein Abrb in Bacillus subtilis 6633 Result in an Increase in Subtilosin Production and a Decrease in Subtilin Production

  • Torsten SteinEmail author


It has been recently shown, that certain strains/isolates of Bacillus subtilis can be used as a probiotic for humans. The production of the macrocyclic sactibiotic subtilosin in B. subtilis ATCC 6633 is highly regulated. To improve the subtilosin productivity of B. subtilis, different growth conditions were compared for maximal expression of the sbo promoter that regulates the expression of the subtilosin biosynthetic gene cluster. Oxygen-limiting conditions led to a strong increase of sbo promoter activities compared to aerobic conditions, and accordingly, the subtilosin amount determined by reversed phase HPLC (7.8 mg/L) was 15-fold superior to the amount of aerobic grown cultures (0.5 mg/L). A further promising enhancement of the subtilosin yield was achieved using a deletion mutant that is avoiding the general transition state regulator protein AbrB. The subtilosin titer of 42 mg/L produced by ΔabrB cells grown under oxygen-limiting conditions corresponds to an 84-fold increase compared to the subtilosin titer obtained from B. subtilis wild type cells propagated in aerobic conditions. Furthermore, evidence is provided that oxygen-limiting conditions led to a strong decrease in the productivity of the lantipeptide subtilin suggesting contrary regulatory mechanisms for the B. subtilis antimicrobials subtilin and subtilosin.


Subtilosin A Subtilosin overproduction Bacillus subtilis Sactibiotic Subtilin Oxygen-limiting growth Antimicrobial peptide Transition state regulator AbrB 



I thank Dr. Karl-Dieter Entian (Univ. Frankfurt) for support.

Compliance with Ethical Standards

Conflicts of Interest

The author declares that he has no conflict of interest.


  1. 1.
    Cutting SM (2011) Bacillus probiotics. Food Microbiol 28:214–220CrossRefGoogle Scholar
  2. 2.
    Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857CrossRefGoogle Scholar
  3. 3.
    Nakamura LK, Roberts MS, Cohan FM (1999) Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. Int J Syst Bacteriol 49:1211–1215CrossRefGoogle Scholar
  4. 4.
    Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30:108–160CrossRefGoogle Scholar
  5. 5.
    Stein T, Düsterhus S, Stroh A, Entian K-D (2004) Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Appl Environ Microbiol 70:2349–2353CrossRefGoogle Scholar
  6. 6.
    Nishio C, Komura S, Kurahashi K (1983) Peptide antibiotic subtilin is synthesized via precursor proteins. Biochem Biophys Res Commun 116:751–758CrossRefGoogle Scholar
  7. 7.
    Banerjee S, Hansen JN (1988) Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J Biol Chem 263:9508–9514Google Scholar
  8. 8.
    Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC 6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci U S A 96:13294–13299CrossRefGoogle Scholar
  9. 9.
    Stein T (2008) Whole-cell matrix-assisted laser desorption/ionization mass spectrometry for rapid identification of bacteriocin/lantibiotic-producing bacteria. Rapid Commun Mass Spectrom 22:1146–1152CrossRefGoogle Scholar
  10. 10.
    Kugler M, Loeffler W, Rapp C, Kern A, Jung G (1990) Rhizocticin A, an antifungal phosphono-oligopeptide of Bacillus subtilis ATCC 6633: biological properties. Arch Microbiol 153:276–281CrossRefGoogle Scholar
  11. 11.
    Zhao H, Shao D, Jiang C, Shi J, Li Q, Huang Q, Rajoka MSR, Yang H, Jin M (2017) Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol 101:5951–5960CrossRefGoogle Scholar
  12. 12.
    Lefevre M, Racedo SM, Denayrolles M, Ripert G, Desfougères T, Lobach AR, Simon R, Pélerin F, Jüsten P, Urdaci MC (2017) Regul Toxicol Pharmacol 83:54–65CrossRefGoogle Scholar
  13. 13.
    Poormontaseri M, Hosseinzadeh S, Shekarforoush SS, Kalantari T (2017) The effects of probiotic Bacillus subtilis on the cytotoxicity of Clostridium perfringens type a in Caco-2 cell culture. BMC Microbiol 17:150. CrossRefGoogle Scholar
  14. 14.
    Babasaki K, Takao T, Shimonishi Y, Kurahashi K (1985) Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem (Tokyo) 98:585–603CrossRefGoogle Scholar
  15. 15.
    Marx R, Stein T, Entian K-D, Glaser SJ (2001) Structure of the Bacillus subtilis peptide antibiotic subtilosin A determined by 1H-NMR and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. J Protein Chem 20:501–506CrossRefGoogle Scholar
  16. 16.
    Kawulka K, Sprules T, McKay RT, Mercier P et al (2003) Structure of subtilosin A, an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to alpha-carbons of phenylalanine and threonine. J Am Chem Soc 125:4726–4727CrossRefGoogle Scholar
  17. 17.
    Shelburne CE, An FY, Dholpe V, Ramamoorthy A, Lopatin DE, Lantz MS (2007) The spectrum of antimicrobial activity of the bacteriocin subtilosin a. J Antimicrob Chemother 59:297–300CrossRefGoogle Scholar
  18. 18.
    Thennarasu S, Lee DK, Poon A, Kawulka KE, Vederas JC, Ramamoorthy A (2005) Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A. Chem Phys Lipids 137:38–51CrossRefGoogle Scholar
  19. 19.
    Quintana VM, Torres NI, Wachsman MB, Sinko PJ, Castilla V, Chikindas M (2014) Antiherpes simplex virus type 2 activity of the antimicrobial peptide subtilosin. J Appl Microbiol 117:1253–1259CrossRefGoogle Scholar
  20. 20.
    Torres NI, Noll KS, Xu S, Li J, Huang Q, Sinko PJ, Wachsman MB, Chikindas ML (2013) Safety, formulation, and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1. Probiotics Antimicrob Proteins 5:26–35CrossRefGoogle Scholar
  21. 21.
    Algburi A, Zehm S, Netrebov V, Bren AB, Chistyakov V, Chikindas ML (2017) Subtilosin prevents biofilm formation by inhibiting bacterial quorum sensing. Probiotics Antimicrob Proteins 9:81–90CrossRefGoogle Scholar
  22. 22.
    Zheng G, Yan LZ, Vederas JC, Zuber P (1999) Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J Bacteriol 181:7346–7355Google Scholar
  23. 23.
    Zheng G, Hehn R, Zuber P (2000) Mutational analysis of the sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J Bacteriol 182:3266–32173CrossRefGoogle Scholar
  24. 24.
    Nakano MM, Zheng G, Zuber P (2000) Dual control of sbo-alb operon expression by the Spo0 and ResDE systems of signal transduction under anaerobic conditions in Bacillus subtilis. J Bacteriol 182:3274–3277CrossRefGoogle Scholar
  25. 25.
    Ye RW, Tao W, Bedzyk L, Young T, Chen M, Li L (2000) Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J Bacteriol 182:4458–4465CrossRefGoogle Scholar
  26. 26.
    Strauch MA, Bobay BG, Cavanagh J, Yao F, Wilson A, Breton YL (2007) Abh and AbrB control of Bacillus subtilis antimicrobial gene expression. J Bacteriol 189:7720–7732CrossRefGoogle Scholar
  27. 27.
    Himes PM, Allen SE, Hwang S, Bowers AA (2016) Production of sactipeptides in Escherichia coli: probing the substrate promiscuity of subtilosin A biosynthesis. ACS Chem Biol 11:1737–1744CrossRefGoogle Scholar
  28. 28.
    Cleveland J, Montvill TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20CrossRefGoogle Scholar
  29. 29.
    Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788CrossRefGoogle Scholar
  30. 30.
    Cheigh CI, Choi HJ, Park H, Kim SB, Kook MC, Kim TS, Hwang JK, Pyun YR (2002) Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi. J Biotechnol 95:225–235CrossRefGoogle Scholar
  31. 31.
    Cheigh CI, Park H, Choi HJ, Pyun YR (2005) Enhanced nisin production by increasing genes involved in nisin Z biosynthesis in Lactococcus lactis subsp. lactis A164. Biotechnol Lett 27:155–160CrossRefGoogle Scholar
  32. 32.
    Heinzmann S, Entian K-D, Stein T (2006) Engineering Bacillus subtilis ATCC 6633 for improved production of the lantibiotic subtilin. Appl Microbiol Biotechnol 69:532–536CrossRefGoogle Scholar
  33. 33.
    Sashihara T, Dan M, Kimura H, Matsusaki H, Sonomoto K, Ishizaki A (2001) The effect of osmotic stress on the production of nukacin ISK-1 from Staphylococcus warneri ISK-1. Appl Microbiol Biotechnol 56:496–501CrossRefGoogle Scholar
  34. 34.
    Michel JF, Cami B, Schaeffer P (1968) Selection of Bacillus subtilis mutants blocked at the beginning of sporulation. I Asporogenous pleotrophic mutants selected by growth in a nitrate medium. Ann Inst Pasteur (Paris) 114:11–20Google Scholar
  35. 35.
    Landy M, Warren GH, Rosenman SB, Colio LG (1948) Bacillomycin: An antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol Med 67:539–541CrossRefGoogle Scholar
  36. 36.
    Stein T, Heinzmann S, Düsterhus S, Borchert S, Entian K-D (2005) Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO1099. J Bacteriol 187:822–828CrossRefGoogle Scholar
  37. 37.
    Sambrook J, Fritsch EF, Maniatis T (1989) Cold Spring Harbor laboratory, Cold Spring HarborGoogle Scholar
  38. 38.
    Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523CrossRefGoogle Scholar
  39. 39.
    Stein T, Borchert S, Kiesau P, Heinzmann S, Klöss S, Klein C, Helfrich M, Entian KD (2002) Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Mol Microbiol 44:403–416CrossRefGoogle Scholar
  40. 40.
    Cosby WM, Zuber P (1997) Regulation of Bacillus subtilis sigmaH (spo0H) and AbrB in response to changes in external pH. J Bacteriol 179:6778–6787CrossRefGoogle Scholar
  41. 41.
    Nakano MM, Zhu Y, Lacelle M, Zhang X, Hulett FM (2000) Interaction of ResD with regulatory regions of anaerobically induced genes in Bacillus subtilis. Mol Microbiol 37:1198–1207CrossRefGoogle Scholar
  42. 42.
    Flühe L, Knappe TA, Gattner MJ, Schäfer A, Burghaus O, Linne U, Marahiel MA (2012) The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin a. Nat Chem Biol 8:350–357CrossRefGoogle Scholar
  43. 43.
    Liu Q, Gao G, Xu H, Qiao M (2012) Identification of the bacteriocin subtilosin A and loss of purL results in its high-level production in Bacillus amyloliquefaciens. Res Microbiol 163:470–478CrossRefGoogle Scholar
  44. 44.
    Nikiforova OA, Klykov S, Volski A, Dicks LMT, Chikindas ML (2016) Subtilosin A production by Bacillus subtilis KATMIRA1933 and colony morphology are influenced by the growth medium. Ann Microbiol 66:661–671CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry & Mol. Biotechnol.HS-AalenAalenGermany
  2. 2.Inst. Microbiol.J.W.-Goethe-UniversityFrankfurt MainGermany

Personalised recommendations