Therapeutic Prospective of a Spore-Forming Probiotic—Bacillus clausii UBBC07 Against Acetaminophen-Induced Uremia in Rats

Abstract

To screen Bacillus clausii UBBC07 as a putative probiotic strain and to examine the protective effect of probiotic—B. clausii UBBC07 spore on uremia on rats induced by acetaminophen. In vitro tests performed to screen potential probiotic strains were gastric and bile acid resistance and ability to reduce pathogen adhesion to surfaces. An in vivo study was performed on rats (n = 18) which were randomly divided into three groups: group I, control—receives normal food and water, groups II and III receive acetaminophen i.p. at the dose of 550 mg/kg/day for 10 days, groups III was treated with B. clausii UBBC07 at a dose of 1 × 109 CFU/day for 15 days. Urea, creatinine, malondialdehyde (MDA), and GSH levels and antioxidant enzymes like super oxide dismutase (SOD) and catalase activity were considered to analyze renal failure. Plasma urea and creatinine levels (p < 0.05) significantly increase and SOD, catalase, and GSH activity level significantly decrease in group II as compared with the control group. After treatment with probiotic, there was a significant increase in SOD and catalase (p < 0.05) and a significant decrease in serum urea, creatinine, and MDA (p < 0.05) in group III in response to group II. The results also revealed that probiotic was able to tolerate pH 3.0–9.0 and 0.3% bile salt. The present study suggests that B. clausii UBBC07 could be used as a novel alternative natural therapy for uremia, a major syndrome of CKD.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Pradhan S, Mandal S, Roy S, Mandal A, Das K, Nandi DK (2013) Attenuation of uremia by orally feeding alpha-lipoic acid on acetaminophen induced uremic rats. Saudi Pharm J 21:187–192. https://doi.org/10.1016/j.jsps.2012.03.003

    Article  PubMed  Google Scholar 

  2. 2.

    James LP, Mayeux PR, Hinson JA (2003) Acetaminophen-induced hepatotoxicity. Drug Metab Dispos 31:1499–1506. https://doi.org/10.14218/JCTH.2015.00052

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Moore M, Thor H, Moore G, Nelson S, Moldéus P, Orrenius S (1985) The toxicity of acetaminophen and N-acetyl-p-benzoquinone imine in isolated hepatocytes is associated with thiol depletion and increased cytosolic Ca2+. J Biol Chem 260:13035–13040. http://www.jbc.org/content/260/24/13035.long

    PubMed  CAS  Google Scholar 

  4. 4.

    Patra A, Mandal S, Samanta A, Chandra MK, Nandi DK (2018) Therapeutic potential of probiotic Lactobacillus plantarum AD3 on acetaminophen induced uremia in experimental rats. Clin Nutr Exp 19:12–22. https://doi.org/10.1016/j.yclnex.2018.02.002

    Article  Google Scholar 

  5. 5.

    Patra A, Mandal A, Roy S, Mandal S, Mondal KC, Nandi DK (2014) Protective effect of selected urease positive Lactobacillus strains on acetaminophen induced uremia in rats. Biomed Prev Nutr 4:271–276. https://doi.org/10.1016/j.bionut.2014.02.001

    Article  Google Scholar 

  6. 6.

    Koppe L, Fouque D, Soulage CO (2018) The role of gut microbiota and diet on uremic retention solutes production in the context of chronic kidney disease. Toxins 10:E55. https://doi.org/10.3390/toxins10040155

    Article  CAS  Google Scholar 

  7. 7.

    Glorieux G, Tattersall J (2015) Uraemic toxins and new methods to control their accumulation: game changers for the concept of dialysis adequacy. Clin Kidney J 8:353–362. https://doi.org/10.1093/ckj/sfv034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. 8.

    Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, Raj DS (2016) Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis 67:483–498. https://doi.org/10.1053/j.ajkd.2015.09.027

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    O’Bryan CA, Pak D, Crandall PG, Lee SO, Ricke SC (2013) The role of prebiotics and probiotics in human health. J Prob Health 1:2. https://doi.org/10.4172/2329-8901.1000108

    Article  Google Scholar 

  10. 10.

    Pandey KR, Naik SR, Vakil BV (2015) Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol 52:7577–7587. https://doi.org/10.1007/s13197-015-1921-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. 11.

    Vanholder R, Glorieux G (2015) The intestine and the kidneys: a bad marriage can be hazardous. Clin Kidney J 8:168–179. https://doi.org/10.1093/ckj/sfv004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Cutting SM (2011) Bacillus probiotics. Food Microbiol 28:214–220

    Article  Google Scholar 

  13. 13.

    Lakshmi SG, Jayanthi N, Saravanan M, Ratna MS (2017) Safety assessment of Bacillus clausii UBBC07, a spore forming probiotic. Toxicol Rep 4:62–71. https://doi.org/10.1016/j.toxrep.2016.12.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Urdaci MC, Bressollier P, Pinchuk I (2004) Bacillus clausii probiotic strains antimicrobial and immunomodulatory activities. J Clin Gastroenterol 38:S86–S90. https://doi.org/10.1097/01.mcg.0000128925.06662.69

    Article  PubMed  Google Scholar 

  15. 15.

    Jayanthi N, Sudha RM (2015) Bacillus clausii-the probiotic of choice in the treatment of diarrhoea. J Yoga Phys Ther 5:1. https://doi.org/10.4172/2157-7595.1000211

    Article  Google Scholar 

  16. 16.

    Hyronimus B, Le Marrec C, Hadj Sassi A, Deschamps A (2000) Acid and bile tolerance of spore-forming lactic acid bacteria. Int J Food Microbiol 61:193–197. https://doi.org/10.1016/S0168-1605(00)00366-4

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140. http://www.jbc.org/content/195/1/133.full.pdf

    PubMed  CAS  Google Scholar 

  19. 19.

    Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Fijan S (2014) Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health 11:4745–4767. https://doi.org/10.3390/ijerph110504745

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kim SY, Moon A (2012) Drug-induced nephrotoxicity and its biomarkers. Biomol Ther 20:268–272. https://doi.org/10.4062/biomolther.2012.20.3.268

    Article  CAS  Google Scholar 

  23. 23.

    Bouhafs L, Moudilou EN, Exbrayat JM, Lahouel M, Idoui T (2015) Protective effects of probiotic Lactobacillus plantarum BJ0021 on liver and kidney oxidative stress and apoptosis induced by endosulfan in pregnant rats. Ren Fail 37:1370–1378. https://doi.org/10.3109/0886022X.2015.1073543

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Sall M, Dou L, Cerini C, Poitevin S, Brunet P, Burtey S (2014) The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: a new concept to understand cardiovascular complications of chronic kidney disease. Toxins 6:934–949. https://doi.org/10.3390/toxins6030934

    Article  CAS  Google Scholar 

  25. 25.

    Poesen R, Windey K, Neven E, Kuypers D, De Preter V, Augustijns P, D’Haese P, Evenepoel P, Verbeke K, Meijers B (2015) The influence of CKD on colonic microbial metabolism. J Am Soc Nephrol 27:1389–1399. https://doi.org/10.1681/ASN.2015030279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, Ni Z, Nguyen TH, Andersen GL (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83:308–315. https://doi.org/10.1038/ki.2012.345

    Article  Google Scholar 

  27. 27.

    Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND (2014) Expansion of urease and uricase-containing, indole- and p-cresol-forming and contraction of short chain fatty acid-producing intestinal bacteria in ESRD. Am J Nephrol 39:230–237. https://doi.org/10.1159/000360010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Hida M, Aiba Y, Sawamura S, Satoh T, Koga Y (1996) Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 74:349–355. https://doi.org/10.1159/000189334

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Takayama F, Taki K, Niwa T (2003) Bifidobacterium in gastro-resistant seamless capsule reduces serum levels of indoxyl sulfate in patients on hemodialysis. Am J Kidney Dis 41:S142–S145. https://doi.org/10.1053/ajkd.2003.50104

    Article  PubMed  Google Scholar 

  30. 30.

    Ranganathan N, Patel BG, Ranganathan P, Marczely J, Dheer R, Pechenyak B, Dunn SR, Verstraete W, Decroos K, Mehta R, Friedman EA (2006) In vitro and in vivo assessment of intraintestinal bacteriotherapy in chronic kidney disease. ASAIO J 52:70–79. https://doi.org/10.1097/01.mat.0000191345.45735.00

    Article  PubMed  Google Scholar 

  31. 31.

    Ranganathan N, Ranganathan P, Friedman EA, Joseph A, Delano B, Goldfarb DS, Tam P, Rao AV, Anteyi E, Musso CG (2010) Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv Ther 27:634–647. https://doi.org/10.1007/s12325-010-0059-9

    Article  PubMed  Google Scholar 

  32. 32.

    Miranda Alatriste PV, Urbina Arronte R, Gomez Espinosa CO, Espinosa Cuevas MD (2014) Effect of probiotics on human blood urea levels in patients with chronic renal failure. Nutr Hosp 29:582–590. https://doi.org/10.3305/nh.2014.29.3.7179

    Article  PubMed  Google Scholar 

  33. 33.

    Natarajan R, Pechenyak B, Vyas U, Ranganathan P, Weinberg A, Liang P, Mallappallil MC, Norin AJ, Friedman EA, Saggi SJ (2014) Randomized controlled trial of strain-specific probiotic formulation (Renadyl) in dialysis patients. Biomed Res Int 2014:568–571. https://doi.org/10.1155/2014/568571

    Article  CAS  Google Scholar 

  34. 34.

    Ramezani A, Raj DS (2014) The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 25:657–670. https://doi.org/10.1681/ASN.2013080905

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Simenhoff ML, Dunn SR, Zollner GP, Fitzpatrick ME, Emery SM, Sandine WE, Ayres JW (1996) Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner Electrolyte Metab 22:92–96

    PubMed  CAS  Google Scholar 

  36. 36.

    Dunn SR, Simenhoff ML, Ahmed KE, Gaughan WJ, Eltayeb BO, Fitzpatrick ME, Emery SM, Ayres JW, Holt KE (1998) Effect of oral administration of freeze-dried Lactobacillus acidophilus on small bowel bacterial overgrowth in patients with end stage kidney disease: reducing uremic toxins and improving nutrition. Int Dairy J 8:545–553. https://doi.org/10.1016/S0958-6946(98)00081-8

    Article  CAS  Google Scholar 

  37. 37.

    Prakash S, Chang TM (1996) Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat Med 2:883–887. https://doi.org/10.1038/nm0896-883

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Unique Biotech Limited, Unit-II, Hyderabad, India for supplying probiotic strains of Bacillus clausii.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chirag Patel.

Ethics declarations

Institutional Animal Ethics Committee approved the experimental protocol SSR/IAEC/2018/08.The handling of the laboratory animals was performed according to CPCSEA guideline, India.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patel, C., Patel, P. & Acharya, S. Therapeutic Prospective of a Spore-Forming Probiotic—Bacillus clausii UBBC07 Against Acetaminophen-Induced Uremia in Rats. Probiotics & Antimicro. Prot. 12, 253–258 (2020). https://doi.org/10.1007/s12602-019-09540-x

Download citation

Keywords

  • Probiotic
  • Uremia
  • Nephrotoxicity
  • Bacillus clausii