The Effects of Probiotics or Synbiotics Supplementation in Women with Polycystic Ovarian Syndrome: a Systematic Review and Meta-Analysis of Randomized Clinical Trials

Abstract

We searched bibliographic databases from inception through May 2018 to evaluate the effect of probiotics (or synbiotics) supplementation in women suffering from polycystic ovary syndrome (PCOS). Seven trials involving 236 women with PCOS and 235 controls were included in the meta-analysis. Comparing with the control group, probiotics (or synbiotics) may improve Quantitative insulin sensitivity check index (QUICKI) (standardized mean difference (SMD) 0.41, 95% confidence intervals (CI) 0.01 to 0.82, P = 0.04), decrease triglyceride (TG) level (mean difference (MD) − 17.51 mg/dL, 95% CI − 29.65 to − 5.36); fasting insulin: (MD − 2.14 μIU/mL, 95% CI − 4.24 to − 0.04), and increase high-density lipoprotein (HDL) (SMD 1.55 mg/dL, 95% CI 0.28 to 2.81). No significant effect of probiotics (or synbiotics) on homeostatic model assessment-insulin resistance (HOMA-IR), fasting plasma glucose (FPG), low-density lipoprotein (LDL), total cholesterol (TC), and anthropometric indices was found in women with PCOS. Although probiotic (or synbiotics) supplementation was effective on some metabolic indices, the effect was negligible and not clinically significant.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Wojciechowski P, Lipowska A, Rys P, Ewens KG, Franks S, Tan S et al (2012) Impact of FTO genotypes on BMI and weight in polycystic ovary syndrome: a systematic review and meta-analysis. Diabetologia 55(10):2636–2645

    CAS  Article  Google Scholar 

  2. 2.

    Hart R, Hickey M, Franks S (2004) Definitions, prevalence and symptoms of polycystic ovaries and polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol 18(5):671–683

    Article  Google Scholar 

  3. 3.

    Brassard M, AinMelk Y, Baillargeon J-P (2008) Basic infertility including polycystic ovary syndrome. Med Clin 92(5):1163–1192

    CAS  Google Scholar 

  4. 4.

    Wehr E, Möller R, Horejsi R, Giuliani A, Kopera D, Schweighofer N, Groselj-Strele A, Pieber TR, Obermayer-Pietsch B (2009) Subcutaneous adipose tissue topography and metabolic disturbances in polycystic ovary syndrome. Wien Klin Wochenschr 121(7–8):262–269

    Article  Google Scholar 

  5. 5.

    Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R (2011) Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 7(4):219–231

    CAS  Article  Google Scholar 

  6. 6.

    Ehrmann DA, Sturis J, Byrne MM, Karrison T, Rosenfield RL, Polonsky KS (1995) Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus. J Clin Invest 96(1):520–527

    CAS  Article  Google Scholar 

  7. 7.

    Puder JJ, Varga S, Kraenzlin M, De Geyter C, Keller U, Müller B (2005) Central fat excess in polycystic ovary syndrome: relation to low-grade inflammation and insulin resistance. J Clin Endocrinol Metab 90(11):6014–6021

    CAS  Article  Google Scholar 

  8. 8.

    Teede H, Deeks A, Moran L (2010) Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med 8(1):41

    CAS  Article  Google Scholar 

  9. 9.

    Baillargeon J-P, Iuorno MJ, Nestler JE (2003) Insulin sensitizers for polycystic ovary syndrome. Clin Obstet Gynecol 46(2):325–340

    Article  Google Scholar 

  10. 10.

    Moran L, Ranasinha S, Zoungas S, McNaughton S, Brown W, Teede H (2013) The contribution of diet, physical activity and sedentary behaviour to body mass index in women with and without polycystic ovary syndrome. Hum Reprod 28(8):2276–2283

    CAS  Article  Google Scholar 

  11. 11.

    Morin-Papunen L, Rautio K, Ruokonen A, Hedberg P, Puukka M, Tapanainen JS (2003) Metformin reduces serum C-reactive protein levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab 88(10):4649–4654

    CAS  Article  Google Scholar 

  12. 12.

    Shamasbi SG, Dehgan P, Charandabi SM-A, Aliasgarzadeh A, Mirghafourvand M (2018) The effect of resistant dextrin as a prebiotic on metabolic parameters and androgen level in women with polycystic ovarian syndrome: a randomized, triple-blind, controlled, clinical trial. Eur J Nutr 1–12 (in press)

  13. 13.

    Allen SJ, Jordan S, Storey M, Thornton CA, Gravenor M, Garaiova I, Plummer SF, Wang D, Morgan G (2010) Dietary supplementation with lactobacilli and bifidobacteria is well tolerated and not associated with adverse events during late pregnancy and early infancy–3. J Nutr 140(3):483–488

    CAS  Article  Google Scholar 

  14. 14.

    Misso M, Boyle J, Norman R, Teede H, editors (2014) Development of evidenced-based guidelines for PCOS and implications for community health. Seminars in reproductive medicine. Thieme Medical Publishers

  15. 15.

    Heshmati J, Farsi F, Shokri F, Rezaeinejad M, Almasi-Hashiani A, Vesali S, Sepidarkish M (2018) A systematic review and meta-analysis of the probiotics and synbiotics effects on oxidative stress. J Funct Foods 46:66–84

    CAS  Article  Google Scholar 

  16. 16.

    Madjd A, Taylor MA, Mousavi N, Delavari A, Malekzadeh R, Macdonald IA, Farshchi HR (2015) Comparison of the effect of daily consumption of probiotic compared with low-fat conventional yogurt on weight loss in healthy obese women following an energy-restricted diet: a randomized controlled trial. Am J Clin Nutr 103(2):323–329

    Article  Google Scholar 

  17. 17.

    Rajkumar H, Kumar M, Das N, Kumar SN, Challa HR, Nagpal R (2015) Effect of probiotic Lactobacillus salivarius UBL S22 and prebiotic fructo-oligosaccharide on serum lipids, inflammatory markers, insulin sensitivity, and gut bacteria in healthy young volunteers: a randomized controlled single-blind pilot study. J Cardiovasc Pharmacol Ther 20(3):289–298

    CAS  Article  Google Scholar 

  18. 18.

    Sanchez M, Darimont C, Drapeau V, Emady-Azar S, Lepage M, Rezzonico E, Ngom-Bru C, Berger B, Philippe L, Ammon-Zuffrey C, Leone P, Chevrier G, St-Amand E, Marette A, Doré J, Tremblay A (2014) Effect of Lactobacillus rhamnosus CGMCC1. 3724 supplementation on weight loss and maintenance in obese men and women. Br J Nutr 111(8):1507–1519

    CAS  Article  Google Scholar 

  19. 19.

    Laitinen K, Poussa T, Isolauri E (2008) Probiotics and dietary counselling contribute to glucose regulation during and after pregnancy: a randomised controlled trial. Br J Nutr 101(11):1679–1687

    Article  Google Scholar 

  20. 20.

    Shoaei T, Heidari-Beni M, Tehrani HG (2015) Effects of probiotic supplementation on pancreatic β-cell function and c-reactive protein in women with polycystic ovary syndrome: a randomized double-blind placebo-controlled clinical trial. Int J Prev Med 6:24

  21. 21.

    Ahmadi S, Jamilian M, Karamali M, Tajabadi-Ebrahimi M, Jafari P, Taghizadeh M, Memarzadeh MR, Asemi Z (2017) Probiotic supplementation and the effects on weight loss, glycaemia and lipid profiles in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Hum Fertil 20(4):254–261

    CAS  Article  Google Scholar 

  22. 22.

    Ghanei N, Rezaei N, Amiri GA, Zayeri F, Makki G, Nasseri E (2018) The probiotic supplementation reduced inflammation in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. J Funct Foods 42:306–311

    CAS  Article  Google Scholar 

  23. 23.

    Karimi E, Moini A, Yaseri M, Shirzad N, Sepidarkish M, Hossein-Boroujerdi M, Hosseinzadeh-Attar MJ (2018) Effects of synbiotic supplementation on metabolic parameters and apelin in women with polycystic ovary syndrome: a randomised double-blind placebo-controlled trial. Br J Nutr 119(4):398–406

    CAS  Article  Google Scholar 

  24. 24.

    Samimi M, Dadkhah A, Kashani HH, Tajabadi-Ebrahimi M, Hosseini ES, Asemi Z (2018) The effects of synbiotic supplementation on metabolic status in women with polycystic ovary syndrome: a randomized double-blind clinical trial. Probiotics Antimicrob Proteins 1–7 (in press)

  25. 25.

    Nasri K, Jamilian M, Rahmani E, Bahmani F, Tajabadi-Ebrahimi M, Asemi Z (2018) The effects of synbiotic supplementation on hormonal status, biomarkers of inflammation and oxidative stress in subjects with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. BMC Endocr Disord 18(1):21

    Article  Google Scholar 

  26. 26.

    Karamali M, Eghbalpour S, Rajabi S, Jamilian M, Bahmani F, Tajabadi-Ebrahimi M et al (2018) Effects of probiotic supplementation on hormonal profiles, biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Arch Iran Med (AIM) 21(1):1–7

  27. 27.

    John GK, Wang L, Nanavati J, Twose C, Singh R, Mullin G (2018) Dietary alteration of the gut microbiome and its impact on weight and fat mass: a systematic review and meta-analysis. Genes 9(3):167

    Article  Google Scholar 

  28. 28.

    Mazidi M, Rezaie P, Ferns GA, Vatanparast H (2017) Impact of probiotic administration on serum c-reactive protein concentrations: systematic review and meta-analysis of randomized control trials. Nutrients 9(1):20

    Article  Google Scholar 

  29. 29.

    Akbari V, Hendijani F (2016) Effects of probiotic supplementation in patients with type 2 diabetes: systematic review and meta-analysis. Nutr Rev 74(12):774–784

    Article  Google Scholar 

  30. 30.

    Ruan Y, Sun J, He J, Chen F, Chen R, Chen H (2015) Effect of probiotics on glycemic control: a systematic review and meta-analysis of randomized, controlled trials. PLoS One 10(7):e0132121

    Article  Google Scholar 

  31. 31.

    Kasinska MA, Drzewoski J (2015) Effectiveness of probiotics in type 2 diabetes: a meta-analysis. Pol Arch Med Wewn 125(11):803–813

    PubMed  Google Scholar 

  32. 32.

    Tabrizi R, Moosazadeh M, Lankarani KB, Akbari M, Heydari ST, Kolahdooz F et al (2017) The effects of synbiotic supplementation on glucose metabolism and lipid profiles in patients with diabetes: a systematic review and meta-analysis of randomized controlled trials. Probiotics Antimicrob Proteins 10(2):329–42

    Article  Google Scholar 

  33. 33.

    Fernandes R, do Rosario VA, Mocellin MC, Kuntz MG, Trindade EB (2017) Effects of inulin-type fructans, galacto-oligosaccharides and related synbiotics on inflammatory markers in adult patients with overweight or obesity: a systematic review. Clin Nutr 36(5):1197–1206

    CAS  Article  Google Scholar 

  34. 34.

    Li C, Li X, Han H, Cui H, Peng M, Wang G et al (2016) Effect of probiotics on metabolic profiles in type 2 diabetes mellitus: a meta-analysis of randomized, controlled trials. Medicine (Baltimore) 95(26):e4088

    Article  Google Scholar 

  35. 35.

    He J, Zhang F, Han Y (2017) Effect of probiotics on lipid profiles and blood pressure in patients with type 2 diabetes: a meta-analysis of RCTs. Medicine 96(51):e9166

    CAS  Article  Google Scholar 

  36. 36.

    Wu Y, Zhang Q, Ren Y, Ruan Z (2017) Effect of probiotic lactobacillus on lipid profile: a systematic review and meta-analysis of randomized, controlled trials. PLoS One 12(6):e0178868

    Article  Google Scholar 

  37. 37.

    Cho YA, Kim J (2015) Effect of probiotics on blood lipid concentrations: a meta-analysis of randomized controlled trials. Medicine 94(43):e1714

    Article  Google Scholar 

  38. 38.

    Gilliland S, Nelson C, Maxwell C (1985) Assimilation of cholesterol by Lactobacillus acidophilus. Appl Environ Microbiol 49(2):377–381

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kim G-B, Yi S-H, Lee B (2004) Purification and characterization of three different types of bile salt hydrolases from Bifidobacterium strains. J Dairy Sci 87(2):258–266

    CAS  Article  Google Scholar 

  40. 40.

    Liong M-T, Dunshea FR, Shah NP (2007) Effects of a synbiotic containing Lactobacillus acidophilus ATCC 4962 on plasma lipid profiles and morphology of erythrocytes in hypercholesterolaemic pigs on high-and low-fat diets. Br J Nutr 98(4):736–744

    CAS  Article  Google Scholar 

  41. 41.

    Nielsen TS, Jensen BB, Purup S, Jackson S, Saarinen M, Lyra A, Sørensen JF, Theil PK, Knudsen KEB (2016) A search for synbiotics: effects of enzymatically modified arabinoxylan and Butyrivibrio fibrisolvens on short-chain fatty acids in the cecum content and plasma of rats. Food Funct 7(4):1839–1848

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahdi Sepidarkish.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, formal consent is not required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 107 kb)

ESM 2

(DOCX 13.4 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heshmati, J., Farsi, F., Yosaee, S. et al. The Effects of Probiotics or Synbiotics Supplementation in Women with Polycystic Ovarian Syndrome: a Systematic Review and Meta-Analysis of Randomized Clinical Trials. Probiotics & Antimicro. Prot. 11, 1236–1247 (2019). https://doi.org/10.1007/s12602-018-9493-9

Download citation

Keywords

  • Probiotics
  • Synbiotics
  • Insulin resistance
  • Polycystic ovary syndrome