Skip to main content
Log in

The Effect of Vancomycin on the Viability and Osteogenic Potential of Bone-Derived Mesenchymal Stem Cells

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Traditionally, methicillin-resistant Staphylococcus aureus (MRSA) is treated with vancomycin, administrated intravenously or applied directly onto infected tissue. The effect of direct (as opposed to systemic) vancomycin treatment on bone formation and remodelling is largely unknown. The minimal inhibitory concentration (MIC) of vancomycin was determined by adding 200 μL of different concentrations (1–20 μg/mL) to actively growing cultures of S. aureus Xen 31 (methicillin-resistant) and S. aureus Xen 36 (methicillin-sensitive), respectively, and recording changes in optical density over 24 h. Bone marrow-derived and proximal femur-derived mesenchymal stem cells (bmMSCs and pfMSCs) from rat femora were exposed to 1 × MIC (5 μg/mL) and 4 × MIC (20 μg/mL) of vancomycin for 7 days. Cell viability was determined by staining with crystal violet and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), respectively, and osteogenic differentiation by staining with Alizarin Red S. Vancomycin had no effect on the viability of bmMSCs and pfMSCs, even at high levels (20 μg/mL). The osteogenic differentiation of pfMSCs was partially inhibited, while osteogenesis in bmMSCs was not severely affected. The direct application of vancomycin to infected bone tissue, even at excessive levels, may preserve the viability of resident MSC populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kujala UM, Kaprio J, Sarna S (1994) Osteoarthritis of weight bearing joints of lower limbs in former élite male athletes. Br Med J 308:231–234

    Article  CAS  Google Scholar 

  2. Crowninshield RD, Johnston RC, Andrews JG, Brand RA (1978) A biomechanical investigation of the human hip. J Biomech 11:75–85

    Article  CAS  PubMed  Google Scholar 

  3. Sato T, Sato N (2015) Clinical relevance of the hip joint: part I—review of the anatomy of the hip joint. Int Musculoskelet Med 37:141–145

    Article  Google Scholar 

  4. Zhang Y, Jordan JM (2010) Epidemiology of osteoarthritis. Clin Geriatr Med 26:355–369

    Article  PubMed  PubMed Central  Google Scholar 

  5. Song Z, Borgwardt L, Høiby N, Wu H, Sørensen TS, Borgwardt A (2013) Prosthesis infections after orthopedic joint replacement: the possible role of bacterial biofilms. Orthop Rev (Pavia) 5:65–71

    Article  Google Scholar 

  6. Siopack JS, Jergesen HE (1995) Total hip arthroplasty. West J Med 162:243–249

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Knight SR, Aujla R, Biswas SP (2011) Total hip arthroplasty—over 100 years of operative history. Orthop Rev (Pavia) 3:72–74

    Article  Google Scholar 

  8. Pivec R, Johnson AJ, Mears SC, Mont MA (2012) Hip arthroplasty. Lancet 380:1768–1777

    Article  PubMed  Google Scholar 

  9. Lentino JR (2003) Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis 36:1157–1161

    Article  PubMed  Google Scholar 

  10. Tande AJ, Patel R (2014) Prosthetic joint infection. Clin Microbiol Rev 27:302–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  CAS  PubMed  Google Scholar 

  12. Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J (2008) Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res 466:1710–1715

    Article  PubMed  PubMed Central  Google Scholar 

  13. Parvizi J, Aggarwal V, Rasouli M (2013) Periprosthetic joint infection: current concept. Indian J Orthop 47:10–17

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wolf M, Clar H, Friesenbichler J, Schwantzer G, Bernhardt G, Gruber G, Glehr M, Leithner A, Sadoghi P (2014) Prosthetic joint infection following total hip replacement: results of one-stage versus two-stage exchange. Int Orthop 38:1363–1368

    Article  PubMed  PubMed Central  Google Scholar 

  15. Siljander MP, Sobh AH, Baker KC, Baker EA, Kaplan LM (2018) Multidrug-resistant organisms in the setting of periprosthetic joint infection—diagnosis, prevention, and treatment. J Arthroplast 33:185–194

    Article  Google Scholar 

  16. Ravi S, Zhu M, Luey C, Young SW (2016) Antibiotic resistance in early periprosthetic joint infection. Orthop Surg 86:1014–1018

    Google Scholar 

  17. Parvizi J, Alijanipour P, Barberi EF, Hickok NJ, Phillips KS, Shapiro IM, Schwarz EM, Stevens MH, Wang Y, Shirtliff ME (2015) Novel developments in the prevention, diagnosis, and treatment of periprosthetic joint infections. J Am Acad Orthop Surg 23:32–43

    Article  Google Scholar 

  18. Kirby A, Graham R, Williams NJ, Wootton M, Broughton CM, Alanazi M, Anson J, Neal TJ, Parry CM (2010) Staphylococcus aureus with reduced glycopeptide susceptibility in Liverpool, UK. J Antimicrob Chemother 65:721–724

    Article  CAS  PubMed  Google Scholar 

  19. Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263

    Article  CAS  Google Scholar 

  20. Zakeri-milani P, Loveymi BD, Jelvehgari M, Valizadeh H (2013) The characteristics and improved intestinal permeability of vancomycin PLGA-nanoparticles as colloidal drug delivery system. Colloids and Surfaces B: Biointerfaces 103:174–181

    Article  CAS  PubMed  Google Scholar 

  21. Lotfipour F, Abdollahi S, Jelvehgari M, Valizadeh H, Hassan M, Milani M (2013) Study of antimicrobial effects of vancomycin loaded PLGA nanoparticles against Enterococcus clinical isolates. Drug Res (Stuttg) 64:348–352

    Article  CAS  Google Scholar 

  22. Song C, Guo Z, Ma Q, Chen Z, Liu Z, Jia H, Dang G (2003) Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem Biophys Res Commun 308:458–462

    Article  CAS  PubMed  Google Scholar 

  23. Heim M, Frank O, Kampmann G, Sochocky N, Pennimpede T, Fuchs P, Hunziker W, Weber P, Martin I, Bendik I (2004) The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells. Endocrinology 145:848–859

    Article  CAS  PubMed  Google Scholar 

  24. Duque G, Rivas D (2007) Alendronate has an anabolic effect on bone through the differentiation of mesenchymal stem cells. J Bone Miner Res 22:1603–1611

    Article  CAS  PubMed  Google Scholar 

  25. Jacobs FA, Sadie-Van Gijsen H, van de Vyver M, Ferris WF (2016) Vanadate impedes adipogenesis in mesenchymal stem cells derived from different depots within bone. Front Endocrinol (Lausanne) 7:1–12

    Article  Google Scholar 

  26. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16

    Article  CAS  PubMed  Google Scholar 

  27. Prakash V, Lewis JS, Jorgensen JH (2008) Vancomycin MICs for methicillin-resistant Staphylococcus aureus isolates differ based upon the susceptibility test method used. Antimicrob Agents Chemother 52:4528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang G, Hindler JF, Ward KW, Bruckner DA (2006) Increased vancomycin MICs for Staphylococcus aureus clinical isolates from a university hospital during a 5-year period. J Clin Microbiol 44:3883–3886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 6:25–64

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was funded by the National Research Foundation, South Africa. Grants were allocated to H Sadie-Van Gijsen and LMT Dicks. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon M. T. Dicks.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Booysen, E., Sadie-Van Gijsen, H., Deane, S.M. et al. The Effect of Vancomycin on the Viability and Osteogenic Potential of Bone-Derived Mesenchymal Stem Cells. Probiotics & Antimicro. Prot. 11, 1009–1014 (2019). https://doi.org/10.1007/s12602-018-9473-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-018-9473-0

Keywords

Navigation