Abstract
Enterococci are well-known for their ability to produce a variety of antimicrobial peptides called enterocins. Most of these enterocins withstand extreme conditions and are very effective against a broad spectrum of undesirable bacteria including some Gram-negative bacteria. The same enterococci strain can produce multiple enterocins simultaneously. The genetic determinants of these bacteriocins can either be located on plasmids or on bacterial chromosome. Digestion of Enterococcus faecium GHB21 plasmids with various restriction endonucleases suggests the presence of two plasmids named pGHB-21.1 and pGHB-21.2 whose respective sizes are ~ 10.0 kb and ~ 3.3 kb. The screening of enterocin-encoding genes among E. faecium GHB21 genome by PCR followed by amplicon sequencing indicated the presence of three different enterocin structural genes similar to entA, entB, and entP genes previously detected in other E. faecium strains. These enterocin genes were, subsequently, localized on the bacterial chromosome based on PCR-targeted screening using total DNA and plasmids of E. faecium GHB21 as separate templates.
This is a preview of subscription content, access via your institution.




References
Jack RW, Tagg JR, Ray B (1995) Bacteriocins of Gram positive bacteria. Microbiol Rev 59:171–200
Klaenhammer TR (1988) Bacteriocins of lactic acid bacteria. Biochimie 70:337–349
Yang SC, Lin CH, Sung CT, Fang JY (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 5:241
Pieniz S, Andreazza R, Anghinoni T, Camargo F, Brandelli A (2014) Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control 37:251–256
Svetoch E, Eruslanov B, Perelygin V, Mitsevich E, Mitsevich I, Borzenkov V, Levchuk V, Svetoch O, Kovalev Y, Stepanshin Y, Siragusa G, Seal B, Stern N (2008) Diverse antimicrobial killing by Enterococcus faecium E 50-52 bacteriocin. J Agric Food Chem 56:1942–1948
Belkum MJ, Hayema BJ, Geis A, Kok J, Venema G (1989) Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid. Appl Environ Microbiol 55:1187–1191
Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20
Luquet FM, Corrieu G (2005) Bactéries lactiques et probiotiques. Tec & Doc Lavoisier, Paris
Bonacina JS, Saavedra LH (2015) Genome mining and transcriptional analysis of bacteriocin genes in Enterococcus faecium CRL1879. J Data Mining Genomics Proteomics 6:1–8
García de Fernando G (2011) Enterococcus in milk and dairy products. In: Fuquay JW, Fox PF, McSweeney PLH (eds) Encyclopedia of dairy sciences, 2nd edn. Elsevier, Boston, pp 153–159
Hassan M, Brede D, Diep D, Nes I, Lotfipour F, Hojabri Z (2015) Efficient inactivation of multi-antibiotics resistant nosocomial enterococci by purified hiracin bacteriocin. Adv Pharm Bull 5:393–401
Mojsova S, Krstevski K, Dzadzovski I, Popova Z, Sekulovski P (2015) Phenotypic and genotypic characteristics of enterocin producing Enterococci against pathogenic bacteria. Mac Vet Rev 38:209–216
Yildirim M, Sahingil D, Tokatli K, Isleroglu H, Bilgin H, Yildirim Z (2014) Enterocin HZ produced by a wild Enterococcus faecium strain isolated from a traditional, starter-free pickled cheese. J Dairy Res 81:164–172
Franz CMAP, Van Belkum M, Holzapfel W, Abriouel H, Gálvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310
Nes IF, Diep DB, Holo H (2007) Bacteriocin diversity in Streptococcus and Enterococcus. J Bacteriol 189:1189–1198
Nes I, Diep D, Ike Y (2014) Enterococcal bacteriocins and antimicrobial proteins that contribute to niche control. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug resistant infection, 1st edn. Massachusetts Eye and Ear Infirmary, Boston, pp 637–668
Franz CMAP, Schillinger U, Holzapfel WH (1996) Production and characterization of enterocin 900, a bacteriocin produced by Enterococcus faecium BFE 900 from black olives. Int J Food Microbiol 29:255–270
Casaus P, Nilsen T, Cintas L, Nes I, Hernandez P, Holo H (1997) Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 143:2287–2294
Ennahar S, Asou Y, Zendo T, Sonomoto K, Ishizaki A (2001) Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81. Int J Food Microbiol 70:291–301
Foulquié Moreno MR, Callewaert R, Devreese B, Van Beeumen J, De Vuyst L (2003) Isolation and biochemical characterisation of enterocins produced by Enterococci from different sources. J Appl Microbiol 94:214–229
Sonsa-Ard N, Rodtong S, Chikindas ML, Yongsawatdigul J (2015) Characterization of bacteriocin produced by Enterococcus faecium CN-25 isolated from traditionally Thai fermented fish roe. Food Control 54:308–316
Van den Berghe E, De Winter T, De Vuyst L (2006) Enterocin A production by Enterococcus faecium FAIR-E 406 is characterised by a temperature- and pH-dependent switch-off mechanism when growth is limited due to nutrient depletion. Int J Food Microbiol 107:159–170
Huang Y, Ye K, Yu K, Wang K, Zhou G (2016) The potential influence of two Enterococcus faecium on the growth of Listeria monocytogenes. Food Control 67:18–24
Park SH, Itoh K, Fujisawa T (2003) Characteristics and identification of enterocins produced by Enterococcus faecium JCM 5804T. J Appl Microbiol 95:294–300
Merzoug M, Dalache F, Zadi Karam H, Karam NE (2016) Isolation and preliminary characterisation of bacteriocin produced by Enterococcus faecium GHB21 isolated from Algerian paste of dates “ghars”. Ann Microbiol 66:795–805
De Man JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of Lactobacilli. J Appl Bacteriol 23:130–135
De Vuyst L, Foulquié Moreno MR, Revets H (2003) Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int J Food Microbiol 84:299–318
Gutiérrez J, Criado R, Citti R, Martín M, Herranz C, Nes I, Cintas L, Hernández P (2005) Cloning, production and functional expression of enterocin P, a sec-dependent bacteriocin produced by Enterococcus faecium P13, in Escherichia coli. Int J Food Microbiol 103:239–250
Cintas L, Casaus P, Herranz C, Havarstein L, Holo H, Hernandez P, Nes I (2000) Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J Bacteriol 182:6806–6814
Saavedra L, Minahk C, de Ruiz Holgado A, Sesma F (2004) Enhancement of the enterocin CRL35 activity by a synthetic peptide derived from the NH2-terminal sequence. Antimicrob Agents Chemother 48:2778–2781
Zendo T, Eungruttanagorn N, Fujioka S, Tashiro Y, Nomura K, Sera Y, Kobayashi G, Nakayama J, Ishizaki A, Sonomoto K (2005) Identification and production of a bacteriocin from Enterococcus mundtii QU 2 isolated from soybean. J Appl Microbiol 99:1181–1190
Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York
Garcia-Migura L, Hasman H, Jensen LB (2009) Presence of pRI1: a small cryptic mobilizable plasmid isolated from Enterococcus faecium of human and animal origin. Curr Microbiol 58:95–100
Kumar N, Ponnaluri C, Putarjunan A, Ranganathan S, Roy U, Das A (2012) Characterization of temperature inducible promoters from a novel rolling circle replicating plasmid of Enterococcus faecium DJ1. Plasmid 67:211–226
Clewell DB, Weaver KE, Dunny GM, Coque TM, Francia MV, Hayes F (2014) Extrachromosomal and mobile elements in enterococci: transmission, maintenance, and epidemiology. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug resistant infection, 1st edn. Massachusetts Eye and Ear Infirmary, Boston, pp 309–420
Francia MV, Clewell DB (2002) Amplification of the tetracycline resistance determinant of pAMα1 in Enterococcus faecalis requires a site-specific recombination event involving relaxase. J Bacteriol 184:5187–5193
Nilsen T, Nes IF, Holo H (1998) An exported inducer peptide regulates bacteriocin production in Enterococcus faecium CTC492. J Bacteriol 180:1848–1854
Aymerich T, Holo H, Havarstein LS, Hugas M, Garriga M, Nes I (1996) Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62:1676–1682
Cintas L, Casaus P, Håvarstein L, Hernández P, Nes I (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330
Brandão A, Almeida T, Muñoz-Atienza E, Torres C, Igrejas G, Hernández P, Cintas L, Poeta P, Herranz C (2010) Antimicrobial activity and occurrence of bacteriocin structural genes in Enterococcus spp. of human and animal origin isolated in Portugal. Arch Microbiol 192:927–936
Javaherzadeh V, Jamshidian M, Zahraei M, Youseftabar A, Milani M, Hassan M, Lotfipour F (2015) Evaluation of bacteriocin activities among enterococcal poultry isolates from east Azarbaijan Iran. Pharm Sci 21:72–76
Izquierdo E, Wagner C, Marchioni E, Aoude-Werner D, Ennahar S (2009) Enterocin 96, a novel class II bacteriocin produced by Enterococcus faecalis WHE 96, isolated from Munster cheese. Appl Environ Microbiol 75:4273–4276
Ogaki MB, Rocha KR, Terra MR, Furlaneto MC, Maia L (2016) Screening of the enterocin-encoding genes and antimicrobial activity in Enterococcus species. J Microbiol Biotechnol 26:1026–1034
Özdemir GB, Oryaşın E, Bıyık HH, Özteber M, Bozdoğan B (2011) Phenotypic and genotypic characterization of bacteriocins in enterococcal isolates of different sources. Indian J Microbiol 51:182–187
Poeta P, Costa D, Rojo-Bezares B, Zarazaga M, Klibi N, Rodrigues J, Torres C (2007) Detection of antimicrobial activities and bacteriocin structural genes in faecal Enterococci of wild animals. Microbiol Res 162:257–263
Hu C, Malaphan W, Zendo T, Nakayama J, Sonomoto K (2010) Enterocin X, a novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides. Appl Environ Microbiol 76:4542–4545
Achemchem F, Cebrián R, Abrini J, Martínez-Bueno M, Valdivia E, Maqueda M (2012) Antimicrobial characterization and safety aspects of the bacteriocinogenic Enterococcus hirae F420 isolated from Moroccan raw goat milk. Can J Microbiol 58:596–604
Funding
This work was funded by the Algerian Ministry of Higher Education and Scientific Research (MESRS), General Directorate for Scientific Research and Technological Development (DGRSDT), and the University of Glasgow.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Ethical Approval
This article does not contain any studies with human participants or animals performed by any of the authors.
For this type of study, formal consent is not required.
This manuscript has not been published and is not under consideration for publication elsewhere.
Rights and permissions
About this article
Cite this article
Merzoug, M., Mosbahi, K., Walker, D. et al. Screening of the Enterocin-Encoding Genes and Their Genetic Determinism in the Bacteriocinogenic Enterococcus faecium GHB21. Probiotics & Antimicro. Prot. 11, 325–331 (2019). https://doi.org/10.1007/s12602-018-9448-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12602-018-9448-1
Keywords
- E. faecium GHB21
- Plasmids
- PCR
- Enterocin genes
- Genetic determinism