Kefir Accelerates Burn Wound Healing Through Inducing Fibroblast Cell Migration In Vitro and Modulating the Expression of IL-1ß, TGF-ß1, and bFGF Genes In Vivo

Abstract

Kefir is a natural probiotic compound with a long history of health benefits which can improve wound healing. This study investigated the regeneration potential of kefir in vitro scratch assay and in vivo burn wound in rat model. Cytotoxicity of different concentrations of kefir was evaluated by colorimetric methylthiazoltetrazolium assay. A scratch wound experiment was performed to investigate the ability of kefir in reducing the gap of wounds in a dose-dependent manner, in vitro. The standardized kefir was incorporated into silver sulfadiazine (SSD) and applied on burn wounds in vivo, and was compared with the SSD and negative control groups after 7, 14, and 28 days of treatment. The wound sites were then removed for histopathological and morphometric analyses, assessment of interleukin-1β (IL-1β), transforming growth factor-β1 (TGF-β1), basic fibroblast growth factor (bFGF), dry weight, and hydroxyproline contents. Kefir enhanced proliferation and migration of human dermal fibroblast (HDF) cells and 12.50, 6.25, and 3.12 μL/mL concentrations showed better effects on the scratch assay. Kefir resulted in reduction of IL-1β and TGF-β1 expression at day 7 compared to the negative control. Kefir also reduced the expression of IL-1β at days 14 and 28 and stimulated bFGF at day 28. It significantly improved the dry matter and hydroxyproline contents in the burn wounds. Kefir also resulted in enhanced angiogenesis and elevated migration and proliferation of fibroblasts and improved fibrous connective tissue formation in the wound area. The morphometric results indicated significant global contraction values in the kefir-treated wounds compared to other groups. Taken together, the findings suggest that kefir has considerable ability to accelerate healing of the burn wounds. Therefore, kefir may be a possible option to improve the outcomes of severe burns.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Prado MR, Blandón LM, Vandenberghe LP, Rodrigues C, Castro GR, Thomaz-Soccol V, Soccol CR (2015) Milk kefir: composition, microbial cultures, biological activities, and related products. Front Microbiol 6:1177

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Plessas S, Nouska C, Mantzourani I, Kourkoutas Y, Alexopoulos A, Bezirtzoglou E (2016) Microbiological exploration of different types of kefir grains. Fermentation 3:1

    Article  CAS  Google Scholar 

  3. 3.

    Lopitz O, Rementeria F, Elguezabal N, Garaizar J (2006) Kefir: a symbiotic yeasts-bacteria community with alleged healthy capabilities. Rev Iberoam Micol 23:67–74

    Article  Google Scholar 

  4. 4.

    Otles S, Oe C (2003) Kefir: a probiotic dairy-composition, nutritional and therapeutic aspects. Pakistan J Nutr 2:54–59

    Article  Google Scholar 

  5. 5.

    Oryan A, Alemzadeh E, Moshiri A (2017) Burn wound healing: present concepts, treatment strategies and future directions. J Wound Care 26:5–19

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Tiwari V (2012) Burn wound: how it differs from other wounds? Indian J Plast Surg 45:364–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Winter GD (1975) Histological aspects of burn wound healing. Burns 1:191–196

    Article  Google Scholar 

  8. 8.

    Dries DJ, Marini JJ (2017) Management of Critical Burn Injuries: recent developments. Korean J Crit Care Med 32:9–21

    Article  Google Scholar 

  9. 9.

    Farina JA, Rosique MJ, Rosique RG (2013) Curbing inflammation in burn patients. Int J Inflam 2013 (2013). http://doi.org/10.1155/2013/715645

  10. 10.

    Porter C, Hurren NM, Herndon DN, Børsheim E (2013) Whole body and skeletal muscle protein turnover in recovery from burns. Int J Burns Trauma 3:9–17

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Argenta A, Satish L, Gallo P, Liu F, Kathju S (2016) Local application of probiotic bacteria prophylaxes against sepsis and death resulting from burn wound infection. PLoS One 11:e0165294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Laurie C, Hogan BK, Murray CK, Loo FL, Hospenthal DR, Cancio LC, Kim SH, Renz EM, Barillo D, Holcomb JB (2010) Contribution of bacterial and viral infections to attributable mortality in patients with severe burns: an autopsy series. Burns 36:773–779

    Article  Google Scholar 

  13. 13.

    Branski LK, Al-Mousawi A, Rivero H, Jeschke MG, Sanford AP, Herndon DN (2009) Emerging infections in burns. Surg Infect 10:389–397

    Article  Google Scholar 

  14. 14.

    Jamalifar H, Rahimi H, Samadi N, Shahverdi A, Sharifian Z, Hosseini F, Eslahi H, Fazeli M (2011) Antimicrobial activity of different Lactobacillus species against multi-drug resistant clinical isolates of Pseudomonas aeruginosa. Iran J Microbiol 3:21

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Rodrigues KL, Caputo LRG, Carvalho JCT, Evangelista J, Schneedorf JM (2005) Antimicrobial and healing activity of kefir and kefiran extract. Int J Antimicrob Agents 25:404–408

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Atalan G, Demirkan I, Yaman H, Cina M (2003) Effect of topical kefir application on open wound healing on in vivo study. Kafkas Univ Vet Fak Dderg 9:43–47

    Google Scholar 

  17. 17.

    Huseini HF, Rahimzadeh G, Fazeli MR, Mehrazma M, Salehi M (2012) Evaluation of wound healing activities of kefir products. Burns 38:719–723

    Article  Google Scholar 

  18. 18.

    Shridharani SM, Magarakis M, Manson PN, Singh NK, Basdag B, Rosson GD (2010) The emerging role of antineoplastic agents in the treatment of keloids and hypertrophic scars: a review. Ann Plast Surg 64:355–361

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Kang C-G, Hah D-S, Kim C-H, Kim Y-H, Kim E, Kim J-S (2011) Evaluation of antimicrobial activity of the methanol extracts from 8 traditional medicinal plants. Toxicol Res 27:31–36

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Fiorda FA, de Melo Pereira GV, Thomaz-Soccol V, Medeiros AP, Rakshit SK, Soccol CR (2016) Development of kefir-based probiotic beverages with DNA protection and antioxidant activities using soybean hydrolyzed extract, colostrum and honey. LWT-Food sci technol 68:690–697

    Article  CAS  Google Scholar 

  21. 21.

    Muhammad AA, Pauzi NAS, Arulselvan P, Abas F, Fakurazi S (2013) In vitro wound healing potential and identification of bioactive compounds from Moringa oleifera Lam. Biomed Res Int 2013 (2013). https://doi.org/10.1155/2013/974580

  22. 22.

    Oryan A, Goodship AE, Silver IA (2008) Response of a collagenase-induced tendon injury to treatment with a polysulphated glycosaminoglycan (Adequan). Connect Tissue Res 49:351–360

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Oryan A, Moshiri A, Meimandiparizi A-H (2011) Effects of sodium-hyaluronate and glucosamine-chondroitin sulfate on remodeling stage of tenotomized superficial digital flexor tendon in rabbits: a clinical, histopathological, ultrastructural, and biomechanical study. Connect Tissue Res 52:329–339

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Oryan A, Khalafi-Nezhad A, Toloo N, Rad S (2007) Effects of 4-chloro-2, 6-bis-(2-hydroxyl-benzyl)-phenol on healing of skin wounds and growth of bacteria. J Vet Med A 54:585–591

    Article  CAS  Google Scholar 

  25. 25.

    Schencke C, Vasconcellos A, Sandoval C, Torres P, Acevedo F, del Sol M (2016) Morphometric evaluation of wound healing in burns treated with Ulmo (Eucryphia cordifolia) honey alone and supplemented with ascorbic acid in guinea pig (Cavia porcellus). Burns & Trauma 4:25

    Article  Google Scholar 

  26. 26.

    Oryan A, Silver IA, Goodship AE (2009) Effects of a serotonin S2-receptor blocker on healing of acute and chronic tendon injuries. J Investig Surg 22:246–255

    Article  Google Scholar 

  27. 27.

    Guo S, LA DP (2010) Factors affecting wound healing. J Dent Res 89:219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Mickelson MA, Mans C, Colopy SA (2016) Principles of wound management and wound healing in exotic pets. Vet Clin North Am Exot Anim Pract 19:33–53

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kohn DF, Clifford C (2002) Biology and diseases of rats. Laboratory animal medicine 2:121–167

    Article  Google Scholar 

  30. 30.

    Gottrup F, Ågren MS, Karlsmark T (2000) Models for use in wound healing research: a survey focusing on in vitro and in vivo adult soft tissue. Wound Repair Regen 8:83–96

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Dorsett-Martin WA (2004) Rat models of skin wound healing: a review. Wound Repair Regen 12:591–599

    Article  Google Scholar 

  32. 32.

    Nasrabadi H, Ebrahimi T, Banadaki D, Kajousangi T (2011) Study of cutaneous wound healing in rats treated with Lactobacillus plantarum on days 1, 3, 7, 14 and 21. Afr J Pharm Pharmacol 5:2395–2401

    Article  CAS  Google Scholar 

  33. 33.

    Partlow J, Blikslager A, Matthews C, Law M, Daniels J, Baker R, Labens R (2016) Effect of topically applied Saccharomyces boulardii on the healing of acute porcine wounds: a preliminary study. BMC Res Notes 9:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Garrote GL, Abraham AG, De Antoni GL (2000) Inhibitory power of kefir: the role of organic acids. J Food Prot 63:364–369

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Yüksekdağ Z, Beyatli Y, Aslim B (2004) Determination of some characteristics coccoid forms of lactic acid bacteria isolated from Turkish kefirs with natural probiotic. LWT-Food sci technol 37:663–667

    Article  CAS  Google Scholar 

  36. 36.

    Yüksekdaǧ ZN, Beyath Y, Aslım B (2004) Metabolic activities of Lactobacillus spp. strains isolated from kefir. Mol Nutr Food Res 48:218–220

    Google Scholar 

  37. 37.

    Halper J, Leshin L, Lewis S, Li W (2003) Wound healing and angiogenic properties of supernatants from Lactobacillus cultures. Exp Biol Med 228:1329–1337

    Article  CAS  Google Scholar 

  38. 38.

    Wong VW, Martindale RG, Longaker MT, Gurtner GC (2013) From germ theory to germ therapy: skin microbiota, chronic wounds, and probiotics. Plast Reconstr Surg 132:854e–861e

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Thomson C, Hassan I, Dunn K (2012) Yakult: a role in combating multi-drug resistant Pseudomonas aeruginosa? J Wound Care 21:566–569

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Fijan S (2016) Influence of the growth of Pseudomonas aeruginosa in milk fermented by multispecies probiotics and kefir microbiota. J Probiotics Health 3:136

    Google Scholar 

  42. 42.

    Mobili P, de los Ángeles Serradell M, Trejo SA, FXA P, Abraham AG, De Antoni GL (2009) Heterogeneity of S-layer proteins from aggregating and non-aggregating Lactobacillus kefir strains. Antonie Van Leeuwenhoek 95:363–372

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Yilmaz-Ersan L, Ozcan T, Akpinar-Bayizit A, Sahin S (2016) The antioxidative capacity of kefir produced from goat milk. Int J Chem Eng Appl 7:22

    CAS  Google Scholar 

  44. 44.

    Suetsuna K, Ukeda H, Ochi H (2000) Isolation and characterization of free radical scavenging activities peptides derived from casein. J Nutr Biochem 11:128–131

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Syarina PNA, Karthivashan G, Abas F, Arulselvan P, Fakurazi S (2015) Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells. EXCLI J 14:385

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Liang C-C, Park AY, Guan J-L (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333

    Article  CAS  Google Scholar 

  47. 47.

    Schäfer M, Werner S (2007) Transcriptional control of wound repair. Annu Rev Cell Dev Biol 23:69–92

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Osuagwu F, Oladejo O, Imosemi I, Aiku A, Ekpo O, Salami A, Oyedele O, Akang E (2004) Enhanced wound contraction in fresh wounds dressed with honey in Wistar rats (Rattus Novergicus). West Afr J Med 23:114–118

    CAS  PubMed  Google Scholar 

  49. 49.

    Oncul O, Yildiz S, Gurer US, Yeniiz E, Qyrdedi T, Top C, Gocer P, Akarsu B, Cevikbas A, Cavuslu S (2007) Effect of the function of polymorphonuclear leukocytes and interleukin-1 beta on wound healing in patients with diabetic foot infections. J Inf Secur 54:250–256

    CAS  Google Scholar 

  50. 50.

    Hadisaputro S, Djokomoeljanto R, Soesatyo M (2012) The effects of oral plain kefir supplementation on proinflammatory cytokine properties of the hyperglycemia Wistar rats induced by streptozotocin. Acta Med Indones 44:e4

    Google Scholar 

  51. 51.

    Prado MRM, Boller C, Zibetti RGM, de Souza D, Pedroso LL, Soccol CR (2016) Anti-inflammatory and angiogenic activity of polysaccharide extract obtained from Tibetan kefir. Microvasc Res 108:29–33

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Darby IA, Hewitson TD (2007) Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol 257:143–179

    Article  CAS  Google Scholar 

  53. 53.

    Lucas T, Waisman A, Ranjan R, Roes J, Krieg T, Müller W, Roers A, Eming SA (2010) Differential roles of macrophages in diverse phases of skin repair. J Immunol 184:3964–3977

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Gopalakrishnan A, Ram M, Kumawat S, Tandan S, Kumar D (2016) Quercetin accelerated cutaneous wound healing in rats by increasing levels of VEGF and TGF-β1. Indian J Exp Biol 54:187–195

    CAS  PubMed  Google Scholar 

  55. 55.

    Wagner W, Wehrmann M (2007) Differential cytokine activity and morphology during wound healing in the neonatal and adult rat skin. J Cell Mol Med 11:1342–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Shi H-X, Lin C, Lin B-B, Wang Z-G, Zhang H-Y, Wu F-Z, Cheng Y, Xiang L-J, Guo D-J, Luo X (2013) The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo. PLoS One 8:e59966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Huang N, Lin J, Li S, Deng Y, Kong S, Hong P, Yang P, Liao M, Hu Z (2018) Preparation and evaluation of squid ink polysaccharide-chitosan as a wound-healing sponge. Mat Sci Eng C 82:354–362

    Article  CAS  Google Scholar 

  58. 58.

    Pereira LP, Mota MR, Brizeno LA, Nogueira FC, Ferreira EG, Pereira MG, Assreuy AM (2016) Modulator effect of a polysaccharide-rich extract from Caesalpinia ferrea stem barks in rat cutaneous wound healing: role of TNF-α, IL-1β, NO, TGF-β. J Ethnopharmacol 187:213–223

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Ding L, Shan X, Zhao X, Zha H, Chen X, Wang J, Cai C, Wang X, Li G, Hao J (2017) Spongy bilayer dressing composed of chitosan–Ag nanoparticles and chitosan–Bletilla striata polysaccharide for wound healing applications. Carbohydr Polym 157:1538–1547

    Article  CAS  PubMed  Google Scholar 

  60. 60.

    Witthuhn R, Schoeman T, Britz T (2005) Characterisation of the microbial population at different stages of kefir production and kefir grain mass cultivation. Int Dairy J 15:383–389

    Article  CAS  Google Scholar 

  61. 61.

    Wang Y, Li C, Liu P, Ahmed Z, Xiao P, Bai X (2010) Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet kefir. Carbohydr Polym 82:895–903

    Article  CAS  Google Scholar 

  62. 62.

    Badel S, Bernardi T, Michaud P (2011) New perspectives for lactobacilli exopolysaccharides. Biotechnol Adv 29:54–66

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Ruas-Madiedo P, Hugenholtz J, Zoon P (2002) An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J 12:163–171

    Article  CAS  Google Scholar 

  64. 64.

    Nikolic M, López P, Strahinic I, Suárez A, Kojic M, Fernández-García M, Topisirovic L, Golic N, Ruas-Madiedo P (2012) Characterisation of the exopolysaccharide (EPS)-producing lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics. Int J Food Microbiol 158:155–162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the authorities of the Veterinary School, Shiraz University for their kind cooperation. We would also thank the INSF (grant number 96006039) for its kind financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ahmad Oryan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oryan, A., Alemzadeh, E. & Eskandari, M.H. Kefir Accelerates Burn Wound Healing Through Inducing Fibroblast Cell Migration In Vitro and Modulating the Expression of IL-1ß, TGF-ß1, and bFGF Genes In Vivo. Probiotics & Antimicro. Prot. 11, 874–886 (2019). https://doi.org/10.1007/s12602-018-9435-6

Download citation

Keywords

  • Kefir
  • Scratch assay
  • Histopathology
  • Real-time PCR
  • Burn wound healing