Skip to main content

Advertisement

Log in

Consumption of Probiotic Lactobacillus fermentum MTCC: 5898-Fermented Milk Attenuates Dyslipidemia, Oxidative Stress, and Inflammation in Male Rats Fed on Cholesterol-Enriched Diet

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

There is a growing and alarming prevalence that increased serum cholesterol is closely related to increased cardiovascular disease risk. Probiotic consumption could be a safe and natural strategy to combat. Therefore, we sought to examine the cholesterol-lowering potential of co-supplementation of probiotic bacteria Lactobacillus fermentum MTCC: 5898-fermented buffalo milk (2.5% fat) in rats fed cholesterol-enriched diet. Male Wistar rats were divided into three groups on the basis of feed, viz. group 1, fed standard diet (SD); group 2, fed cholesterol-enriched diet (CED); and group 3, fed cholesterol-enriched diet along with L. fermentum MTCC: 5898-fermented milk (CED+LF) for 90 days. At the endpoint, significantly higher levels of serum total cholesterol, low-density lipoprotein cholesterol, triacylglycerols, very low density lipoprotein cholesterol, atherogenic index, coronary artery risk index, hepatic lipids, lipid peroxidation, and mRNA expression of inflammatory cytokines (TNF-α and IL-6) in the liver while significantly lower levels of serum high-density lipoprotein cholesterol and anti-oxidative enzyme activities, catalase, superoxide dismutase, and glutathione peroxidase in the liver and kidney were observed in the CED group compared to the SD group. Compared to the CED group, these adverse physiological alterations were found significantly improved in the CED+LF group. Hence, this study proposes that L. fermentum MTCC: 5898 is a potential probiotic bacteria that can be consumed to tackle hypercholesterolemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gielen S, Landmesser U (2014) The year in cardiology 2013: cardiovascular disease prevention. Eur Heart J 35(5):307–312

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization (WHO) (2009) Cardiovascular disease; fact. Sheet n_317. WHO, Geneva

    Google Scholar 

  3. Beltowski J, Wojcicka G, Jamroz-Wisniewska A (2009) Adverse effects of statins-mechanisms and consequences. Curr Drug Saf 4(3):209–228

    Article  CAS  PubMed  Google Scholar 

  4. Parker BA, Thompson PD (2012) Effect of statins on skeletal muscle: exercise, myopathy, and muscle outcomes. Exerc Sport Sci Rev 40(4):188–194

    PubMed  PubMed Central  Google Scholar 

  5. Food and Agriculture Organization (FAO)/World Health Organization (WHO) (2001) Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria; Food and Agriculture Organization of the United Nations and World Health Organization Expert Consultation Report. Rome, FAO/WHO

    Google Scholar 

  6. Pakdaman MN, Udani JK, Molina JP, Shahani M (2015) The effects of the DDS-1 strain of Lactobacillus on symptomatic relief for lactose intolerance-a randomized, double-blind, placebo-controlled, crossover clinical trial. Nutr J 15(1):56

    Article  CAS  Google Scholar 

  7. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(S2):S1–S63

    Article  CAS  PubMed  Google Scholar 

  8. Kirpich IA, Feng W, Wang Y, Liu Y, Beier JI, Arteel GE, Falkner KC, Barve SS, McClain CJ (2013) Ethanol and dietary unsaturated fat (corn oil/linoleic acid enriched) cause intestinal inflammation and impaired intestinal barrier defense in mice chronically fed alcohol. Alcohol 47(3):257–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang Y, Liu Y, Kirpich I, Ma Z, Wang C, Zhang M, Suttles J, McClain C, Feng W (2013) Lactobacillus rhamnosus GG reduces hepatic TNFα production and inflammation in chronic alcohol-induced liver injury. J Nutr Biochem 24(9):1609–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM, Hassan FA (2012) Hypocholesterolaemic effect of yoghurt containing Bifidobacterium pseudocatenulatum G4 or Bifidobacterium longum BB536. Food Chem 135(2):356–361

    Article  CAS  PubMed  Google Scholar 

  11. Kim SJ, Park SH, Sin HS, Jang SH, Lee SW, Kim SY, Kwon B, Yu KY, Kim SY, Yang DK (2017) Hypocholesterolemic effects of probiotic mixture on diet-induced hypercholesterolemic rats. Nutrients 9(3):293

    Article  CAS  PubMed Central  Google Scholar 

  12. Sadrzadeh-Yeganeh H, Elmadfa I, Djazayery A, Jalali M, Heshmat R, Chamary M (2010) The effects of probiotic and conventional yoghurt on lipid profile in women. Br J Nutr 103(12):1778–1783

    Article  CAS  PubMed  Google Scholar 

  13. Sharma R, Kapila R, Kapasiya M, Saliganti V, Dass G, Kapila S (2014) Dietary supplementation of milk fermented with probiotic Lactobacillus fermentum enhances systemic immune response and antioxidant capacity in aging mice. Nutr Res 34(11):968–981

    Article  CAS  PubMed  Google Scholar 

  14. Ahn YT, Kim GB, Lim KS, Baek YJ, Kim HU (2003) Deconjugation of bile salts by Lactobacillus acidophilus isolates. Int Dairy J 13(4):303–311

    Article  CAS  Google Scholar 

  15. Liong MT, Shah NP (2005) Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains. Int Dairy J 15(4):391–398

    Article  CAS  Google Scholar 

  16. Kleyn DH, Lynch JM, Barbano DM, Bloom MJ, Mitchell MW (2001) Determination of fat in raw and processed milks by the Gerber method: collaborative study. J AOAC Int 84(5):1499–1508

    CAS  PubMed  Google Scholar 

  17. AOAC (1990) Official methods of analysis, 16th edn. Association of Official Agricultural Chemists, Washington, DC

    Google Scholar 

  18. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502

    CAS  PubMed  Google Scholar 

  19. Liu CS, Lin CC, Li TC (1999) The relation of white blood cell count and atherogenic index ratio of LDL-cholesterol to HDL-cholesterol in Taiwan school children. Acta Paediatrica Taiwanica= Taiwan er ke yi xue hui za zhi 40(5):319–324

    CAS  PubMed  Google Scholar 

  20. Boers M, Nurmohamed MT, Doelman CJ, Lard LR, Verhoeven AC, Voskuyl AE, Huizinga TW, Van de Stadt RJ, Dijkmans BA, van der Linden S (2003) Influence of glucocorticoids and disease activity on total and high density lipoprotein cholesterol in patients with rheumatoid arthritis. Ann Rheum Dis 62(9):842–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  22. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  24. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. FEBS J 47(3):469–474

    CAS  Google Scholar 

  25. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169

    CAS  PubMed  Google Scholar 

  26. Kaushal D, Kansal VK (2012) Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum alleviates age-inflicted oxidative stress and improves expression of biomarkers of ageing in mice. Mol Biol Rep 39(2):1791–1799

    Article  CAS  PubMed  Google Scholar 

  27. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  28. Choi EA, Chang HC (2015) Cholesterol-lowering effects of a putative probiotic strain Lactobacillus plantarum EM isolated from kimchi. LWT-Food Sci Technol 62(1):210–217

    Article  CAS  Google Scholar 

  29. Emami A, Bazargani A (2014) Dual effects of lactobacilli as a cholesterol assimilator and an inhibitor of gastrointestinal pathogenic bacteria. Int J Enteric Pathog 2(1):1–5

    Article  CAS  Google Scholar 

  30. Pan DD, Zeng XQ, Yan YT (2011) Characterisation of Lactobacillus fermentum SM-7 isolated from koumiss, a potential probiotic bacterium with cholesterol-lowering effects. J Sci Food Agric 91(3):512–518

    Article  CAS  PubMed  Google Scholar 

  31. Jayashree S, Jayaraman K, Kalaichelvan G (2010) Probiotic properties of the riboflavin producing Lactobacillus fermentum strain isolated from yoghurt sample. J Ecobiotechnol 2010:2(2)

  32. Pereira DI, Gibson GR (2002) Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl Environ Biotechnol 68(9):4689–4693

    CAS  Google Scholar 

  33. Wang Y, Xu N, Xi A, Ahmed Z, Zhang B, Bai X (2009) Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Appl Microbial Biotechnol 84(2):341–347

    Article  CAS  Google Scholar 

  34. Kapila S, Sinha P (2006) Antioxidative and hypocholesterolemic effect of Lactobacillus casei ssp casei (biodefensive properties of lactobacilli). Indian J Med Sci 60(9):361–370

    Article  PubMed  Google Scholar 

  35. Kumar M, Rakesh S, Nagpal R, Hemalatha R, Ramakrishna A, Sudarshan V, Ramagoni R, Shujauddin M, Verma V, Kumar A, Tiwari A (2013) Probiotic Lactobacillus rhamnosus GG and aloe vera gel improve lipid profiles in hypercholesterolemic rats. Nutrition 29(3):574–579

    Article  CAS  PubMed  Google Scholar 

  36. Ding W, Shi C, Chen M, Zhou J, Long R, Guo X (2017) Screening for lactic acid bacteria in traditional fermented Tibetan yak milk and evaluating their probiotic and cholesterol-lowering potentials in rats fed a high-cholesterol diet. J Funct Foods 32:324–332

    Article  CAS  Google Scholar 

  37. Pigeon RM, Cuesta EP, Gilliland SE (2002) Binding of free bile acids by cells of yogurt starter culture bacteria. J Dairy Sci 85(11):2705–2710

    Article  CAS  PubMed  Google Scholar 

  38. Roberts CK, Sindhu KK (2009) Oxidative stress and metabolic syndrome. Life Sci 84(21):705–712

    Article  CAS  PubMed  Google Scholar 

  39. Yadav H, Jain S, Sinha PR (2008) Oral administration of dahi containing probiotic Lactobacillus acidophilus and Lactobacillus casei delayed the progression of streptozotocin-induced diabetes in rats. J Dairy Res 75(2):189–195

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Du R, Wang L, Zhang H (2010) The antioxidative effects of probiotic Lactobacillus casei Zhang on the hyperlipidemic rats. Euro Food Res Technol 231(1):151–158

    Article  CAS  Google Scholar 

  41. Wang Y, Xie J, Li Y, Dong S, Liu H, Chen J, Wang Y, Zhao S, Zhang Y, Zhang H (2016) Probiotic Lactobacillus casei Zhang reduces pro-inflammatory cytokine production and hepatic inflammation in a rat model of acute liver failure. Eur J Nutr 55(2):821–831

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director of ICAR-National Dairy Research Institute, Karnal, for providing laboratory facilities to carry out this work.

Funding

Funding is provided by ICAR-National Dairy Research Institute, Karnal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Kapila.

Ethics declarations

Ethical Approval

The study was approved by the Institute’s Animal Ethical Committee (IAEC) for Animal Experiments of National Dairy Research Institute (IAEC No. 101/16 dated 21 April 2016), Karnal, Haryana, India.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R., Khan, S.H., Mada, S.B. et al. Consumption of Probiotic Lactobacillus fermentum MTCC: 5898-Fermented Milk Attenuates Dyslipidemia, Oxidative Stress, and Inflammation in Male Rats Fed on Cholesterol-Enriched Diet. Probiotics & Antimicro. Prot. 11, 509–518 (2019). https://doi.org/10.1007/s12602-018-9429-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-018-9429-4

Keywords

Navigation