Skip to main content
Log in

Production of Phytase Enzyme by a Bioengineered Probiotic for Degrading of Phytate Phosphorus in the Digestive Tract of Poultry

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Probiotics are beneficial microorganisms and have long been used in food production as well as health promotion products. Bioengineered probiotics are used to express and transfer native or recombinant molecules to the mucosal surface of the digestive tract to improve feed efficiency and promote health. Lactococcus lactis is a potential probiotic candidate to produce useful biological proteins. The aim of this investigation was to develop a recombinant Lactococcus lactis with the potential of producing phytase. To enhance the efficiency of expression and secretion of recombinant phytase, usp45 signal peptide was added to the expression vector containing phytase gene (appA2) derived from Escherichia coli. Sequencing of recombinant plasmid containing appA2 showed the correct construction of plasmid. Total length of the phytase insert was 1.25 kbp. A Blast search of the cloned fragment showed 99% similarity to the reported E. coli phytase sequence in the GenBank (accession number: AM946981.2). A plasmid containing usp45 and appA2 electrotransferred into Lactococcus lactis. Zymogram with polyacrylamide gel revealed that the protein extract from the supernatant and the cell pellet of recombinant bacteria had phytase activity. Enzyme activity of 4 U/ml was obtained in cell extracts, and supernatant maximal phytase activity was 19 U/ml. The recombinant L. lactis was supplemented in broiler chicken feed and showed the increase of apparent digestibility on phytate phosphorus in the digestive tract and it was same as performance of E. coli commercial phytase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Graf E (1983) Applications of phytic acid. J Am Oil Chem Soc 60:1861–1867. https://doi.org/10.1007/BF02901539

    Article  CAS  Google Scholar 

  2. Holm PB, Kristiansen KN, Pedersen HB (2002) Transgenic approaches in commonly consumed cereals to improve iron and zinc content and bioavailability. J Nutr 132(3):514S–516S. https://doi.org/10.1093/jn/132.3.514S

  3. Wodzinski RJ, Ullah AH (1996) Phytase. Adv Appl Microbiol 42:263–302. https://doi.org/10.1016/S0065-2164(08)70375-7

    Article  CAS  PubMed  Google Scholar 

  4. Lei XG, Stahl CH (2001) Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl Microbiol Biotechnol 57(4):474–481. https://doi.org/10.1007/s002530100795

    Article  CAS  PubMed  Google Scholar 

  5. Mullaney EJ, Ullah AH (2003) The term phytase comprises several different classes of enzymes. Biochem Biophys Res Commun 312(1):179–184. https://doi.org/10.1016/j.bbrc.2003.09.176

    Article  CAS  PubMed  Google Scholar 

  6. Tufarelli V, Crovace AM, Rossi G, Laudadio V (2017) Effect of a dietary probiotic blend on performance, blood characteristics, meat quality and faecal microbial shedding in growing-finishing pigs. S Afr J Anim Sci 47(6):875–882. https://doi.org/10.4314/sajas.v47i6.15

    Article  CAS  Google Scholar 

  7. Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, Gibson GR, Isolauri E, Moreau MC, Roberfroid M, Rowland I (1998) Functional food science and gastrointestinal physiology and function. Br J Nutr 80(Suppl 1):S147–S171. https://doi.org/10.1079/BJN19980108

    Article  CAS  PubMed  Google Scholar 

  8. de Vos WM, Hugenholtz J (2004) Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends Biotechnol 22(2):72–79. https://doi.org/10.1016/j.tibtech.2003.11.011

    Article  CAS  PubMed  Google Scholar 

  9. Sendra E, Fayos P, Lario Y, Fernandez-Lopez J, Sayas-Barbera E, Perez-Alvarez JA (2008) Incorporation of citrus fibers in fermented milk containing probiotic bacteria. Food Microbiol 25(1):13–21. https://doi.org/10.1016/j.fm.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  10. Majidzadeh Heravi R, Kermanshahi H, Sankian M, Nassiri MR, Moussavi AH, Nasiraii LR, Varasteh A (2016) Construction of a probiotic lactic acid bacterium that expresses acid resistant phytase enzyme. J Agric Sci Technol 18:925–936

    Google Scholar 

  11. Zuo RY, Chang JA, Yin QQ, Chen LY, Chen QX, Yang X, Zheng QH, Ren GZ, Feng H (2010) Phytase gene expression in Lactobacillus and analysis of its biochemical characteristics. Microbiol Res 165(4):329–335. https://doi.org/10.1016/j.micres.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Yang YX, Cai B, Cao PH, Yang MM, Chen YL (2014) Coexpression and secretion of endoglucanase and phytase genes in Lactobacillus reuteri. Int J Mol Sci 15(7):12842–12860. https://doi.org/10.3390/ijms150712842

  13. Igbasan FA, Manner K, Miksch G, Borriss R, Farouk A, Simon O (2000) Comparative studies on the in vitro properties of phytases from various microbial origins. Arch Tierernahr 53(4):353–373. https://doi.org/10.1080/17450390009381958

    Article  CAS  PubMed  Google Scholar 

  14. Pakbaten B, Majidzadeh Heravi R, Kermanshahi H, Sekhavati H, A J (2016) Construction of pFUM003 expression vector with extracellular secretion properties. Koomesh 17 (4):1017–1023

  15. Mason CK, Collins MA, Thompson K (2005) Modified electroporation protocol for lactobacilli isolated frorn the chicken crop facilitates transformation and the use of a genetic tool. J Microbiol Methods 60(3):353–363. https://doi.org/10.1016/j.mimet.2004.10.013

    Article  CAS  PubMed  Google Scholar 

  16. Yin QQ, Zheng QH, Kang XT (2007) Biochemical characteristics of phytases from fungi and the transformed microorganism. Anim Feed Sci Technol 132:341–350. https://doi.org/10.1016/j.anifeedsci.2006.03.016

    Article  CAS  Google Scholar 

  17. Han YM, Yang F, Zhou AG, Miller ER, Ku PK, Hogberg MG, Lei XG (1997) Supplemental phytases of microbial and cereal sources improve dietary phytate phosphorus utilization by pigs from weaning through finishing. J Anim Sci 75(4):1017–1025. https://doi.org/10.2527/1997.7541017x

    Article  CAS  PubMed  Google Scholar 

  18. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227:2079–2085. https://doi.org/10.1038/227680a0

    Article  Google Scholar 

  19. Bae HD, Yanke LJ, Cheng KJ, Selinger LB (1999) A novel staining method for detecting phytase activity. J Microbiol Methods 39:17–22. https://doi.org/10.1016/S0167-7012(99)00096-2

    Article  CAS  PubMed  Google Scholar 

  20. Gao Y, Shang C, Saghai Maroof MA, Biyashev RM, Grabau EA, Kwanyuen P, Burton JW, Buss GR (2007) A modified colorimetric method for Phytic acid analysis in soybean. Crop Sci 47:1797–1803. https://doi.org/10.2135/cropsci2007.03.0122

    Article  CAS  Google Scholar 

  21. SASInstitute, (2004) SAS/STAT User’s guide: statistics. Version 9.2 Edition. SAS Inst. Inc., Cary, NC

  22. Jeong H, Barbe V, Lee CH, Vallenet D, Yu DS, Choi SH, Couloux A, Lee SW, Yoon SH, Cattolico L, Hur CG, Park HS, Segurens B, Kim SC, Oh TK, Lenski RE, Studier FW, Daegelen P, Kim JF (2009) Genome sequences of Escherichia coli B strains REL606 and BL21(DE3). J Mol Biol 394(4):644–652. https://doi.org/10.1016/j.jmb.2009.09.052

    Article  CAS  PubMed  Google Scholar 

  23. van Hartingsveldt W, van Zeijl CM, Harteveld GM, Gouka RJ, Suykerbuyk ME, Luiten RG, van Paridon PA, Selten GC, Veenstra AE, van Gorcom RF et al (1993) Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene 127(1):87–94. https://doi.org/10.1016/0378-1119(93)90620-I

    Article  PubMed  Google Scholar 

  24. Borerro J, Jimenez j (2011) Use of the usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis. Appl Microbiol Biotechnol 89:131–143. https://doi.org/10.1007/s00253-010-2849-z

  25. Neef J, Milder FJ, Koedijk DG, Klaassens M, Heezius EC, van Strijp JA, Otto A, Becher D, van Dijl JM, Buist G (2015) Versatile vector suite for the extracytoplasmic production and purification of heterologous his-tagged proteins in Lactococcus lactis. Appl Microbiol Biotechnol 99(21):9037–9048. https://doi.org/10.1007/s00253-015-6778-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Asseldonk M, Rutten G, Oteman M, Siezen RJ, de Vos WM, Simons G (1990) Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene 95(1):155–160. https://doi.org/10.1016/0378-1119(90)90428-T

    Article  PubMed  Google Scholar 

  27. Le Loir Y, Nouaille S, Commissaire J, Bretigny L, Gruss A, Langella P (2001) Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microb 67(9):4119–4127. https://doi.org/10.1128/AEM.67.9.4119-4127.2001

    Article  Google Scholar 

  28. Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermudez-Humaran LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE, Guimaraes VD, Oliveira MN, Charlier C, Gautier M, Langella P (2005) Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microbial Cell Fact 4(1):2. https://doi.org/10.1186/1475-2859-4-2

    Article  CAS  Google Scholar 

  29. Golovan S, Wang G, Zhang J, Forsberg CW (2000) Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can J Microbiol 46(1):59–71. https://doi.org/10.1139/w99-084

    Article  CAS  PubMed  Google Scholar 

  30. Rodriguez E, Han Y, Lei XG (1999) Cloning, sequencing, and expression of an Escherichia coli acid phosphatase/phytase gene (appA2) isolated from pig colon. Biochem Biophys Res Commun 257(1):117–123. https://doi.org/10.1006/bbrc.1999.0361

    Article  CAS  PubMed  Google Scholar 

  31. Miksch G, Kleist S, Friehs K, Flaschel E (2002) Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors. Appl Microbiol Biotechnol 59(6):685–694. https://doi.org/10.1007/s00253-002-1071-z

    Article  CAS  PubMed  Google Scholar 

  32. Lee S, Kim T, Stahl CH, Lei XG (2005) Expression of Escherichia coli appA2 phytase in four yeast systems. Biotechnol Lett 27(5):327–334. https://doi.org/10.1007/s10529-005-0704-6

    Article  CAS  PubMed  Google Scholar 

  33. Ptak A, Józefiak D, Kierończyk B, Rawski M, Żyła K, Świątkiewicz S (2013) Effect of different phytases on the performance, nutrient retention and tibia composition in broiler chickens. Arch Tierernahr 56(104):1028–1038. https://doi.org/10.7482/0003-9438-56-104

    Article  CAS  Google Scholar 

  34. Ravindran V, Morel PC, Partridge GG, Hruby M, Sands JS (2006) Influence of an Escherichia coli-derived phytase on nutrient utilization in broiler starters fed diets containing varying concentrations of phytic acid. Poult Sci 85(1):82–89. https://doi.org/10.1093/ps/85.1.82

    Article  CAS  PubMed  Google Scholar 

  35. De Angelis M, Gallo G, Corbo MR, McSweeney PL, Faccia M, Giovine M, Gobbetti M (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87(3):259–270. https://doi.org/10.1016/S0168-1605(03)00072-2

    Article  CAS  PubMed  Google Scholar 

  36. Khodaii Z, Mehrabani Natanzi M, Naseri MH, Goudarzvand M, Dodson H, Snelling AM (2013) Phytase activity of lactic acid bacteria isolated from dairy and pharmaceutical probiotic products. Int J Enteric Pathog 1(1):12–16. https://doi.org/10.17795/ijep9359

    Article  Google Scholar 

  37. Zamudio M, Gonzalez A, Medina JA (2001) Lactobacillus plantarum phytase activity is due to non-specific acid phosphatase. Lett Appl Microbiol 32(3):181–184. https://doi.org/10.1046/j.1472-765x.2001.00890.x

    Article  CAS  PubMed  Google Scholar 

  38. Greiner R, Konietzny U, Jany KD (1993) Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys 303(1):107–113. https://doi.org/10.1006/abbi.1993.1261

    Article  CAS  PubMed  Google Scholar 

  39. Jiang XR, Luo F, Wu SG, Zhang HJ, Bontempo V, Qu RM, Yue HY, Qi GH (2015) Effect of phytase supplementation on apparent phosphorus digestibility and phosphorus output in broiler chicks fed low-phosphorus diets. Int J Health, Anim sci Food saf 1:9–17. https://doi.org/10.13130/2283-3927/4649

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Excellence Centre for Animal Sciences, and Faculty of Agriculture, Ferdowsi University of Mashhad and Dr. Banayan Aval for his English editing service.

Funding

This study was funded by Ferdowsi university of Mashhad (FUM) 3/30173; 2/16/2014.

Author information

Authors and Affiliations

Authors

Contributions

BP carried out experimental process. RM designed and drafted the manuscript. HK and MS analyzed data and information of study. AJ conducted the study in laboratory. MM carried out animal model part of study. All author contributed in interpretation of results and read and approved the final manuscript.

Corresponding author

Correspondence to Reza Majidzadeh Heravi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakbaten, B., Majidzadeh Heravi, R., Kermanshahi, H. et al. Production of Phytase Enzyme by a Bioengineered Probiotic for Degrading of Phytate Phosphorus in the Digestive Tract of Poultry. Probiotics & Antimicro. Prot. 11, 580–587 (2019). https://doi.org/10.1007/s12602-018-9423-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-018-9423-x

Keywords

Navigation