Skip to main content
Log in

Effects of Probiotic Bacteria Bacillus on Growth Performance, Digestive Enzyme Activity, and Hematological Parameters of Asian Sea Bass, Lates calcarifer (Bloch)

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

This study was conducted to evaluate different doses of two species of Bacillus (Bacillus licheniformis and Bacillus subtilis), on growth parameters, chemical composition of fish, activity of liver, and digestive enzymes of Asian sea bass. During 8 weeks, juvenile Asian sea bass received diets supplemented with 1 × 103, 1 × 106, and 1 × 109 CFU g−1 probiotic in addition to a control diet without added microorganisms. At the end of the trial, growth indices (total weight, total length, specific growth rate, total weight gain, food conversion ratio, and condition factor), body composition (crude protein, crude lipid, ash, and dry matter), digestive enzymes (protease, lipase, and amylase), liver enzymes [aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP)], immunologic indicators (lysozyme), and hematological parameters [hematocrit (Hct), hemoglobin (Hb), red blood cells (RBCs), white blood cells (WBCs)] were assessed. Asian sea bass receiving diets supplemented with probiotic Bacillus (Bacillus licheniformis and Bacillus subtilis) showed significantly better growth than those fed the basal diet (control). Regarding body composition, total protein levels and dry matter were higher and lipid levels were lower in fish fed the diet containing 1 × 106 CFU g−1 probiotic compared with the control group (P < 0.05). Digestive enzymes (protease, lipase, and amylase) and hematological parameters (RBC, WBC, and Hb) were all highest in fish fed diet supplemented with 1 × 106 CFU g−1 probiotic Bacillus. Also, liver enzymes (AST, ALT, ALP) were lower in fish fed diet supplemented with 1 × 106 CFU g−1 probiotic Bacillus. Being that supplementation of 1 × 106 CFU g−1 of Bacillus in the diet is the dose which delivers the best results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Glencross B (2006) The nutritional management of barramundi, Lates calcarifer—a review. Aquacul Nutrit 12(4):291–309. https://doi.org/10.1111/j.1365-2095.2006.00410.x

    Article  CAS  Google Scholar 

  2. Haque SA, Reza MS, Islam MA, Roy VC, Alam MA (2014) Effects of antibiotic on bacterial flora in mrigal fish (Cirhinus cirhosus, Bloch, 1795) under laboratory condition. Eur Food Res Technol 2:1–7

    Google Scholar 

  3. Kashem MA (2012) Effects of antibiotic on bacterial flora in fish culture ponds. M.Sc. Thesis., p.22-31. Department of Fisheries Technology. BAU, Mymensingh, Bangladesh

  4. Banerjee G, Ray AK (2017) The advancement of probiotics research and its application in fish farming industries. Res Vet Sci 115:66–77. https://doi.org/10.1016/j.rvsc.2017.01.016

    Article  CAS  PubMed  Google Scholar 

  5. FAO/WHO (2002) Food and agriculture organization of the united and world health organization. Guidelines for the evaluation of probiotics in food, 2002.Disponívelem: <http://www.who.int/foodsafety/fs_management/ en/probiotic_guidelines.pdf>

  6. Balcázar JL, Rojas-Luna T, Cunningham DP (2007) Effect of the addition of four potential probiotic strains on the survival of pacific white shrimp (Litopenaeus vannamei) following immersion challenge with Vibrio parahaemolyticus. J Invertebr Pathol 96(2):147–150. https://doi.org/10.1016/j.jip.2007.04.008

    Article  PubMed  Google Scholar 

  7. Jamali H, Imani A, Abdollahi D, Roozbehfar R, Isari A (2015) Use of probiotic Bacillus spp. in rotifer (Brachionus plicatilis) and Artemia (Artemia urmiana) enrichment: effects on growth and survival of Pacific white shrimp, Litopenaeus vannamei, larvae. Probiots Antimicro Prot 7(2):118–125. https://doi.org/10.1007/s12602-015-9189-3

    Article  Google Scholar 

  8. Pourgholam MA, Khara H, Safari R, Sadati MAY Aramli MS (2017) Hemato-immunological responses and disease resistance in Siberian sturgeon Acipenser baerii fed on a supplemented diet of Lactobacillus plantarum. Probiots Antimicro Prot 9(1):32–40. https://doi.org/10.1007/s12602-016-9229-7

    Article  CAS  Google Scholar 

  9. Azarin H, Aramli MS, Imanpour MR, Rajabpour M (2015) Effect of a probiotic containing Bacillus licheniformis and Bacillus subtilis and ferroin solution on growth performance, body composition and haematological parameters in Kutum (Rutilus frisii kutum) Fry. Probiots Antimicro Prot 7(1):31–37. https://doi.org/10.1007/s12602-014-9180-4

    Article  CAS  Google Scholar 

  10. Nandi A, Banerjee G, Dan SK, Ghosh K,Ray AK (2017) Evaluation of in vivo probiotic efficiency of Bacillus amyloliquefaciens in Labeo rohita challenged by pathogenic strain of Aeromonas hydrophila MTCC 1739. Probiots Antimicro Prot 1-8.doi: https://doi.org/10.1007/s12602-017-9310-x

  11. Cutting SM (2011) Bacillus probiotics. Food Microbiol 28(2):214–220. https://doi.org/10.1016/j.fm.2010.03.007

    Article  PubMed  Google Scholar 

  12. Durkee DL (2010) Coming out of the dairy case: new developments in shelf stable probiotic food. http://foodmaster.com

  13. Bandyopadhyay P, Mohapatra PKD (2009) Effect of a probiotic bacterium Bacillus circulans PB7 in the formulated diets: on growth, nutritional quality and immunity of Catlacatla (Ham.) Fish Physiol Biochem 35(3):467–478. https://doi.org/10.1007/s10695-008-9272-8

    Article  CAS  PubMed  Google Scholar 

  14. El-Dakar AY, Shalaby SM, Saoud IP (2007) Assessing the use of a dietary probiotic/prebiotic as an enhancer of spine foot rabbit fish Siganus rivulatus survival and growth. Aquac Nutr 13(6):407–412. https://doi.org/10.1111/j.1365-2095.2007.00491.x

    Article  Google Scholar 

  15. Zhao Y, Zhang W, Xu W, Mai K, Zhang Y, Liufu Z (2012) Effects of potential probiotic Bacillus subtilis T13 on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish Shellfish Immunol 32(5):750–755. https://doi.org/10.1016/j.fsi.2012.01.027

    Article  CAS  PubMed  Google Scholar 

  16. Nikoskelainen S, Ouwehand AC, Bylund G, Salminen S, Lilius EM (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol 15(5):443–452. https://doi.org/10.1016/S1050-4648(03)00023-8

    Article  CAS  PubMed  Google Scholar 

  17. AOAC (1997) Official methods of analysis. Association of official analytical chemists, Washington, DC, pp 16–17 (Chapter 16)

    Google Scholar 

  18. Sarder MR, Thompson KD, Penman DJ, McAndrew BJ (2001) Immune response of the Nile tilapia (Oreochromis niloticus L.) clones, 1. Non-specific responses. Dev Comp Immunol 25(1):37–46. https://doi.org/10.1016/S0145-305X(00)00040-9

    Article  CAS  PubMed  Google Scholar 

  19. Brown BA (1988) Routine hematology procedures. In: Brown BA (ed) Hematology, principles and procedures. Philadelphia. PA.USA, Leo and Febiger, pp 7–122

    Google Scholar 

  20. Blaxhall PC, Daisley KW (1973) Routine haematological methods for use with fish blood. J Fish Biol 5(6):771–781. https://doi.org/10.1111/j.1095-8649.1973.tb04510.x

    Article  Google Scholar 

  21. Parry RM, Chandan RC, Shahani KM (1965) A rapid and sensitive assay of muramidase. Experim Biol Med 119(2):384–386. https://doi.org/10.3181/00379727-119-30188

    Article  CAS  Google Scholar 

  22. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28(1):56–63. https://doi.org/10.1093/ajcp/28.1.56

    Article  CAS  PubMed  Google Scholar 

  23. Principato GB, Asia MC, Talesa V, Rosi G, Giovannini E (1985) Characterization of the soluble alkaline phosphatase from hepatopancreas of Squilla mantis L. Com Biochem Physiol 80(4):801–804. https://doi.org/10.1016/0305-0491(85)90464-X

    Article  Google Scholar 

  24. Lemieux H, Blier P, Dutil JD (1999) Do digestive enzymes set a physiological limit on growth rate and food conversion efficiency in the Atlantic cod (Gadus morhua)? Fish Physiol Biochem 20(4): 293–303. https://doi.org/10.1023/A:1007791019523

  25. Chong ASC, Hashim R, Chow-Yang L, Ali AB (2002) Partial characterization and activities of proteases from the digestive tract of discus fish (Symphysodon aequifasciata). Aquaculture 203(3–4):321–333. https://doi.org/10.1016/S0044-8486(01)00630-5

    Article  CAS  Google Scholar 

  26. Walter HE (1984) Proteinases: methods with hemoglobin, casein and azocoll as substrates. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol. V. Verlag Chemie, Weinheim, pp 270–277

  27. Robyt JF, Whelan WJ (1968) The β-amylases. In: Radley JA (ed) Starch and its derivates. Academic press, London, pp 477–497

    Google Scholar 

  28. Bier M (1955) Lipases. Methods in enzymology I. Academic Press, New York, pp. 627–642.

  29. Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29(1):2–14. https://doi.org/10.1016/j.fsi.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  30. Nya EJ, Austin B (2009) Use of dietary ginger, Zingiber officinale Roscoe, as animmunostimulant to control Aeromonas hydrophila infections in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 32(11):971–977. https://doi.org/10.1111/j.1365-2761.2009.01101.x

    Article  CAS  PubMed  Google Scholar 

  31. Talpur AD, Ikhwanuddin M (2012) Dietary effects of garlic (Allium sativum) on haemato-immunological parameters, survival, growth, and disease resistance against Vibrio harveyi infection in Asian sea bass, Lates calcarifer (Bloch). Aquaculture 364–365:6–12. https://doi.org/10.1016/j.aquaculture.2012.07.035

    Article  CAS  Google Scholar 

  32. Talpur AD, Ikhwanuddin M (2013) Azadirachta indica (neem) leaf dietary effects on the immunity response and disease resistance of Asian seabass, Lates calcarifer challenged with Vibrio harveyi. Fish Shellfish Immunol 34(1):254–264. https://doi.org/10.1016/j.fsi.2012.11.003

    Article  CAS  PubMed  Google Scholar 

  33. Misra CK, Das BK, Mukherjee SC, Pattnaik P (2006) Effect of long term administration of dietary b-glucan on immunity, growth and survival of Labeo rohita fingerlings. Aquaculture 255(1-4):82–94. https://doi.org/10.1016/j.aquaculture.2005.12.009

    Article  CAS  Google Scholar 

  34. Silva RD, Rocha LO, Fortes BDA, Vieira D, Fioravanti MCS (2012) Parâmetros hematológicos e bioquímicos da tilápia-do-Nilo (Oreochromis niloticus L.) sob estresse por exposição ao ar. Pesq Vet Bras 32(suppl 1):99–107. https://doi.org/10.1590/S0100-736X2012001300017

    Article  Google Scholar 

  35. Falcon DR, Barros MM, Pezzato LE, Solarte WVN, Guimarães IG (2008) Leucograma da tilápia-do-Nilo arraçoada com dietas suplementadas com níveis de vitamina C e lipídeo submetida a estresse por baixa temperatura. Ciên Anim Brasil 9:543–551

    Google Scholar 

  36. Tavares-Dias M, Moraes FR (2004) Hematologia de peixes teleósteos. Villimpress Ribeirão Preto, p 144

  37. Lie O, Syed M, Solbu H (1986) Improved agar plate assays of bovine lysozyme and haemolytic complement activity. Acta Vet Scand 27(1):23–32

    CAS  PubMed  Google Scholar 

  38. Jolle’s P, Jolle’s J (1984) What’s new in lysozyme research. Mol Cell Biochem 63(2):165–189. https://doi.org/10.1007/BF00285225

    Article  Google Scholar 

  39. Takemura A, Takano K (1995) Lysozyme in the ovary of tilapia (Oreochromis mossambicus): its purification and some biological properties. Fish Physiol Biochem 14(5):415–521. https://doi.org/10.1007/BF00003379

    Article  CAS  PubMed  Google Scholar 

  40. Paulsen SM, Engstad RE, Robertsen B (2001) Enhanced lysozyme production in Atlantic salmon (Salmo salar L.) macrophages treated with yeast glucan and bacterial lipopolysaccharide. Fish Shellfish Immuno 11(1):23–37. https://doi.org/10.1006/fsim.2000.0291

    Article  CAS  Google Scholar 

  41. Paulsen SM, Lunde H, Engstad RE, Robertsen B (2003) In vivo effects of glucan and LPS on regulation of lysozyme activity and mRNA expression in Atlantic salmon (Salmo salar). Fish Shellfish Immunol 14(1):39–54. https://doi.org/10.1006/fsim.2002.0416

    Article  CAS  PubMed  Google Scholar 

  42. Sun YZ, Yang HL, Ma RL, Lin WY (2010) Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish Shellfish Immunol 29(5):803–809. https://doi.org/10.1016/j.fsi.2010.07.018

    Article  PubMed  Google Scholar 

  43. Aly SM, Ahmed YAG, Ghareeb AAA, Mohamed MF (2008) Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shell fish Immunol 25(1-2):128–136. https://doi.org/10.1016/j.fsi.2008.03.013

    Article  CAS  Google Scholar 

  44. Wang GX, Liu YT, Li FY, Gao HT, Lei Y, Liu XL (2010) Immunostimulatory activities of Bacillus simplex DR-834 to carp (Cyprinus carpio). Fish Shellfish Immunol 29(3):278–287. https://doi.org/10.1016/j.fsi.2010.03.014

    Article  CAS  Google Scholar 

  45. Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci 101(13):596–601. https://doi.org/10.1073/pnas.0400706101

    Article  CAS  Google Scholar 

  46. Qi Z, Zhang XH, Boon N, Bossier P (2009) Probiotics in aquaculture of China e current state, problems and prospect. Aquaculture 290(1-2):15–21. https://doi.org/10.1016/j.aquaculture.2009.02.012

    Article  Google Scholar 

  47. Scapigliati G, Romano N, Abelli L, Meloni S, Ficca AG, Buonocore F, Bird S, Secombes CJ (2000) Immunopurification of T-cells from sea bass Dicentrarchus labrax (L.) Fish Shellfish Immunol 10(4):329–341. https://doi.org/10.1006/fsim.1999.0243

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Jamali.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adorian, T.J., Jamali, H., Farsani, H.G. et al. Effects of Probiotic Bacteria Bacillus on Growth Performance, Digestive Enzyme Activity, and Hematological Parameters of Asian Sea Bass, Lates calcarifer (Bloch). Probiotics & Antimicro. Prot. 11, 248–255 (2019). https://doi.org/10.1007/s12602-018-9393-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-018-9393-z

Keywords

Navigation