Probiotics and Antimicrobial Proteins

, Volume 11, Issue 1, pp 207–219 | Cite as

Dietary Application of the Probiotic Lactobacillus plantarum 426951 Enhances Immune Status and Growth of Rainbow Trout (Oncorhynchus mykiss) Vaccinated Against Yersinia ruckeri

  • Mehdi SoltaniEmail author
  • Komael Pakzad
  • Ali Taheri-Mirghaed
  • Saeed Mirzargar
  • Seyed Pezhman Hosseini Shekarabi
  • Parasto Yosefi
  • Narges Soleymani


This study was aimed to assess the effect of oral application of Lactobacillus plantarum (2 × 107 CFU g−1 feed) as a probiotic on growth performance and immune status of vaccinated rainbow trout (29.5 ± 2 g) to yersiniosis at 16 ± 2 °C for 72 days. Fish were randomly allocated into 12 fiber glass tanks (4100 L) at a density of 80 fish per tank (240 fish per treatment). The results revealed that the activity of lysozyme and alkaline phosphatase was significantly higher in immunized fish fed with diet supplemented with probiotic (vaccine +probiotic) than that in the immunized group fed with basal diet (vaccine group) while no significant differences in levels of hematological parameters, complements, total IgM, proteins, and the intestine lactic acid bacteria (LAB) were detected. Also, significantly a better growth performance in terms of feed conversion ratio, weight gain, and thermal growth coefficient was seen in the vaccine + probiotic group than that in the vaccine group. These results indicate that feeding probiotic after vaccination can enhance the efficacy of immersion vaccination to Yersinia ruckeri.


Lactobacillus plantarum Yersinia ruckeri Growth Trout Immune response 



The authors wish to thank Mr. Bagheri and Mr. Daryadel for their valuable assistance.

Funding Information

This work was financially supported by research grant from research council of the University of Tehran and Center of Excellence of Aquatic Animal Health, University of Tehran.

Compliance with Ethical Standards

All protocols performed in this study involving animals were in accordance with animal care and use committee of the University of Tehran and were in compliance with the guidelines for “care and use of animals for scientific purposes.”

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ross A, Rucker R, Ewing W (1966) Description of a bacterium associated with redmouth disease of rainbow trout (Salmo gairdneri). Can J Microbiol 12(4):763–770. CrossRefPubMedGoogle Scholar
  2. 2.
    Tobback E, Decostere A, Hermans K, Haesebrouck F, Chiers K (2007) Yersinia ruckeri infections in salmonid fish. J Fish Dis 30(5):257–268. CrossRefPubMedGoogle Scholar
  3. 3.
    Horne MT, Barnes AC (1999) Enteric Redmouth (Yersinia ruckeri). In: Woo PTK, Bruno DW (eds) Fish diseases and disorders. CABI publishing, Wallingford, pp 455–478Google Scholar
  4. 4.
    Raida M, Larsen J, Nielsen M, Buchmann K (2003) Enhanced resistance of rainbow trout, Oncorhynchus mykiss (Walbaum), against Yersinia ruckeri challenge following oral administration of Bacillus subtilis and B. licheniformis (BioPlus2B). J Fish Dis 26(8):495–498. CrossRefPubMedGoogle Scholar
  5. 5.
    Raida MK, Buchmann K (2008) Bath vaccination of rainbow trout (Oncorhynchus mykiss Walbaum) against Yersinia ruckeri: effects of temperature on protection and gene expression. Vaccine 26(8):1050–1062. CrossRefPubMedGoogle Scholar
  6. 6.
    Ispir U, Dorucu M (2010) Effect of immersion booster vaccination with Yersinia ruckeri extracellular products (ECP) on rainbow trout Oncorhynchus mykiss. Int Aquat Res 2(2):127–130Google Scholar
  7. 7.
    Costa AA, Leef MJ, Bridle AR, Carson J, Nowak BF (2011) Effect of vaccination against yersiniosis on the relative percent survival, bactericidal and lysozyme response of Atlantic salmon, Salmo salar. Aquacult 315(3):201–206. CrossRefGoogle Scholar
  8. 8.
    Deshmukh S, Raida MK, Dalsgaard I, Chettri JK, Kania PW, Buchmann K (2012) Comparative protection of two different commercial vaccines against Yersinia ruckeri serotype O1 and biotype 2 in rainbow trout (Oncorhynchus mykiss). Vet Immunol Immunopathol 145(1):379–385. CrossRefPubMedGoogle Scholar
  9. 9.
    Soltani M, Shafiei S, Yosefi P, Mosavi S, Mokhtari A (2014) Effect of Montanide™ IMS 1312 VG adjuvant on efficacy of Yersinia ruckeri vaccine in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 37(1):60–65. CrossRefPubMedGoogle Scholar
  10. 10.
    Villumsen KR, Neumann L, Ohtani M, Strøm HK, Raida MK (2014) Oral and anal vaccination confers full protection against enteric redmouth disease (ERM) in rainbow trout. PLoS One 9(4):e93845. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Soltani M, Mokhtari A, Mirzargar S, Taherimirghaed A, Zargar A, Shafiei S, Hosseini-Shekarabi S (2016) Efficacy and immune response of intraperitoneal vaccination of rainbow trout (Oncorhynchus mykiss) with a Yersinia ruckeri bacterin formulated with Montanide™ ISA 763 AVG adjuvant. Bull Eur Assoc Fish Pathol 36(6):225–236Google Scholar
  12. 12.
    Denev S, Staykov Y, Moutafchieva R, Beev G (2009) Microbial ecology of the gastrointestinal tract of fish and the potential application of probiotics and prebiotics in finfish aquaculture. Int Aquat Res 1(1):1–29Google Scholar
  13. 13.
    Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64(4):655–671. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vine N, Leukes W, Kaiser H, Daya S, Baxter J, Hecht T (2004) Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. J Fish Dis 27(6):319–326. CrossRefPubMedGoogle Scholar
  15. 15.
    Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci U S A 101(13):4596–4601. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Merrifield D, Ringø E (2014) Aquaculture nutrition: gut health, probiotics and prebiotics. John Wiley and Sons, Ltd, Oxford, p 480Google Scholar
  17. 17.
    Lauzon HL, Ringø E (2011) Prevalence and application of lactic acid bacteria in aquatic environments. In: Lahtinen S, Ouwehand AC, Salminen S, von Wright A (eds) Lactic acid bacteria: microbiological and functional aspects, 4th edn. CRC Press, Boca Raton, pp 601–639. CrossRefGoogle Scholar
  18. 18.
    Merrifield D, Bradley G, Harper G, Baker R, Munn C, Davies S (2011) Assessment of the effects of vegetative and lyophilized Pediococcus acidilactici on growth, feed utilization, intestinal colonization and health parameters of rainbow trout (Oncorhynchus mykiss Walbaum). Aquac Nutr 17(1):73–79. CrossRefGoogle Scholar
  19. 19.
    Lamari F, Castex M, Larcher T, Ledevin M, Mazurais D, Bakhrouf A, Gatesoupe F-J (2013) Comparison of the effects of the dietary addition of two lactic acid bacteria on the development and conformation of sea bass larvae, Dicentrarchus labrax, and the influence on associated microbiota. Aquacult 376:137–145CrossRefGoogle Scholar
  20. 20.
    Shahid M, Hussain B, Riaz D, Khurshid M, Ismail M, Tariq M (2016) Identification and partial characterization of potential probiotic lactic acid bacteria in freshwater Labeo rohita and Cirrhinus mrigala. Aquac Res 48(4):1688–1698CrossRefGoogle Scholar
  21. 21.
    Gildberg A, Johansen A, Bøgwald J (1995) Growth and survival of Atlantic salmon (Salmo salar) fry given diets supplemented with fish protein hydrolysate and lactic acid bacteria during a challenge trial with Aeromonas salmonicida. Aquacult 138(1):23–34. CrossRefGoogle Scholar
  22. 22.
    Son VM, Chang C-C, M-C W, Guu Y-K, Chiu C-H, Cheng W (2009) Dietary administration of the probiotic, Lactobacillus plantarum, enhanced the growth, innate immune responses, and disease resistance of the grouper Epinephelus coioides. Fish Shellfish Immunol 26(5):691–698. CrossRefPubMedGoogle Scholar
  23. 23.
    Lee S, Katya K, Park Y, Won S, Seong M, Hamidoghli A, Bai SC (2017) Comparative evaluation of dietary probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese eel, Anguilla japonica. Fish Shellfish Immunol 61:201–210. CrossRefPubMedGoogle Scholar
  24. 24.
    Jatobá A, do Nascimento Vieira F, Buglione-Neto CC, Mourino JLP, Silva BC, Seiftter WQ, Andreatta ER (2011) Diet supplemented with probiotic for Nile tilapia in polyculture system with marine shrimp. Fish Physiol Biochem 37(4):725–732. CrossRefPubMedGoogle Scholar
  25. 25.
    Pérez-Sánchez T, Balcázar J, García Y, Halaihel N, Vendrell D, De Blas I, Merrifield D, Ruiz-Zarzuela I (2011) Identification and characterization of lactic acid bacteria isolated from rainbow trout, Oncorhynchus mykiss (Walbaum), with inhibitory activity against Lactococcus garvieae. J Fish Dis 34(7):499–507. CrossRefPubMedGoogle Scholar
  26. 26.
    Giri SS, Sukumaran V, Oviya M (2013) Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish, Labeo rohita. Fish Shellfish Immunol 34(2):660–666. CrossRefPubMedGoogle Scholar
  27. 27.
    Giri S, Sukumaran V, Sen S, Jena P (2014) Effects of dietary supplementation of potential probiotic Bacillus subtilis VSG1 singularly or in combination with Lactobacillus plantarum VSG3 or/and Pseudomonas aeruginosa VSG2 on the growth, immunity and disease resistance of Labeo rohita. Aquac Nutr 20(2):163–171. CrossRefGoogle Scholar
  28. 28.
    Piccolo G, Bovera F, Lombardi P, Mastellone V, Nizza S, Di Meo C, Marono S, Nizza A (2015) Effect of Lactobacillus plantarum on growth performance and hematological traits of European sea bass (Dicentrarchus labrax). Aquacult Int 23(4):1025–1032. CrossRefGoogle Scholar
  29. 29.
    Pourgholam MA, Khara H, Safari R, Sadati MAY, Aramli MS (2016) Dietary administration of Lactobacillus plantarum enhanced growth performance and innate immune response of Siberian sturgeon, Acipenser baerii. Probiotics Antimicrob Proteins 8(1):1–7. CrossRefPubMedGoogle Scholar
  30. 30.
    Natt MP, Herrick CA (1952) A new blood diluent for counting the erythrocytes and leucocytes of the chicken. Poult Sci 31(4):735–738. CrossRefGoogle Scholar
  31. 31.
    Klontz G (1994) Fish hematology. Tech Fish Immunol 3:121–131Google Scholar
  32. 32.
    Moss DW (1982) Alkaline phosphatase isoenzymes. Clin Chem 28(10):2007–2016PubMedGoogle Scholar
  33. 33.
    Thomas L (1998) Clinical laboratory diagnostics: use and assessment of clinical laboratory results. TH- TH-Books Verlagsgesellschaft, Germany, pp 667–678Google Scholar
  34. 34.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  35. 35.
    Siwicki AK, Anderson DP (1993) Nonspecific defense mechanisms assay in fish. II potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin level in serum. In: Siwicki AK, Anderson DP, Waluga J (eds) Fish disease diagnosis and prevention methods. Olsztyn, Poland, pp 105–112Google Scholar
  36. 36.
    Klesius PH, Shoemaker C, Evans J (1999) Efficacy of a killed Streptococcus iniae vaccine in tilapia (Oreochromis niloticus). Bull Eur Assoc Fish Pathol 19:39–41Google Scholar
  37. 37.
    Sunyer JO, Tort L (1995) Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are effected by the alternative complement pathway. Vet Immunol Immunopathol 45(3):333–345. CrossRefPubMedGoogle Scholar
  38. 38.
    Demers NE, Bayne CJ (1997) The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Dev Comp Immunol 21(4):363–373. CrossRefPubMedGoogle Scholar
  39. 39.
    Iwama GK, Tautz AF (1981) A simple growth model for salmonids in hatcheries. Can J Fish Aquat Sci 38(6):649–656. CrossRefGoogle Scholar
  40. 40.
    Cho CY (1992) Feeding systems for rainbow trout and other salmonids with reference to current estimates of energy and protein requirements. Aquacult 100(1–3):107–123. CrossRefGoogle Scholar
  41. 41.
    Aly SM, Al Zohairy MA, Rahmani AH, Fathi M, Atti NMA (2016) Trials to improve the response of Orechromis niloticus to Aeromonas hydrophila vaccine using immunostimulants (garlic, Echinacea) and probiotics (Organic Green TM and Vet-Yeast TM). Afr J Biotechnol 15(21):989–994CrossRefGoogle Scholar
  42. 42.
    Pereira GV, Jesus GFA, Vieira FN, Pereira SA, Ushizima TT, Mouriño JLP, Martins ML (2016) Probiotic supplementation in diet and vaccination of hybrid surubim (Pseudoplatystoma reticulatum♀ x P. corruscans♂). Ciência Rural 46(2):348–353. CrossRefGoogle Scholar
  43. 43.
    Ghosh S, RingØ E, Selvam ADG, Rahiman KM, Sathyan N, John N, Hatha A (2014) Gut associated lactic acid bacteria isolated from the estuarine fish Mugil cephalus: molecular diversity and antibacterial activities against pathogens. Int J Aquacult 4:1–11. 2014.04.0001 CrossRefGoogle Scholar
  44. 44.
    Dawood MA, Koshio S, Ishikawa M, Yokoyama S (2015) Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and β-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish Shellfish Immunol 45(1):33–42. CrossRefPubMedGoogle Scholar
  45. 45.
    Dawood MA, Koshio S, Ishikawa M, Yokoyama S (2016) Immune responses and stress resistance in red sea bream, Pagrus major, after oral administration of heat-killed Lactobacillus plantarum and vitamin C. Fish Shellfish Immunol 54:266–275. CrossRefPubMedGoogle Scholar
  46. 46.
    RingÖ E, Løvmo L, Kristiansen M, Bakken Y, Salinas I, Myklebust R, Olsen RE, Mayhew TM (2010) Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: a review. Aquac Res 41(4):451–467. CrossRefGoogle Scholar
  47. 47.
    Balcázar JL, Vendrell D, de Blas I, Ruiz-Zarzuela I, Muzquiz JL, Girones O (2008) Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquacult 278(1):188–191. CrossRefGoogle Scholar
  48. 48.
    Todorov S, Koep K, Van Reenen C, Hoffman L, Slinde E, Dicks L (2007) Production of salami from beef, horse, mutton, Blesbok (Damaliscus dorcas phillipsi) and Springbok (Antidorcas marsupialis) with bacteriocinogenic strains of Lactobacillus plantarum and Lactobacillus curvatus. Meat Sci 77(3):405–412. CrossRefPubMedGoogle Scholar
  49. 49.
    Todorov S, Ho P, Vaz-Velho M, Dicks L (2010) Characterization of bacteriocins produced by two strains of Lactobacillus plantarum isolated from Beloura and Chouriço, traditional pork products from Portugal. Meat Sci 84(3):334–343. CrossRefPubMedGoogle Scholar
  50. 50.
    Ghanbari M, Jami M, Rezaei M (2013) Selection of Lactobacillus species from intestinal microbiota of fish for their potential use as biopreservatives. In: Kongo M (ed) Lactic acid bacteria - R&D for food, health and livestock purposes. InTech, Rijeka, Cortia, pp 197–216. CrossRefGoogle Scholar
  51. 51.
    Sahoo TK, Jena PK, Patel AK, Seshadri S (2014) Bacteriocins and their applications for the treatment of bacterial diseases in aquaculture: a review. Aquac Res 47(4):1013–1027CrossRefGoogle Scholar
  52. 52.
    Pérez-Sánchez T, Balcázar JL, Merrifield DL, Carnevali O, Gioacchini G, de Blas I, Ruiz-Zarzuela I (2011) Expression of immune-related genes in rainbow trout (Oncorhynchus mykiss) induced by probiotic bacteria during Lactococcus garvieae infection. Fish Shellfish Immunol 31(2):196–201. CrossRefPubMedGoogle Scholar
  53. 53.
    Harun NO, Zou J, Zhang Y-A, Nie P, Secombes CJ (2008) The biological effects of rainbow trout (Oncorhynchus mykiss) recombinant interleukin-8. Deve Com Immunol 32(6):673–681. CrossRefGoogle Scholar
  54. 54.
    Jimenez N, Coll J, Salguero F, Tafalla C (2006) Co-injection of interleukin 8 with the glycoprotein gene from viral haemorrhagic septicemia virus (VHSV) modulates the cytokine response in rainbow trout (Oncorhynchus mykiss). Vaccine 24(27):5615–5626. CrossRefPubMedGoogle Scholar
  55. 55.
    Wang E, Wang J, Long B, Wang K, He Y, Yang Q, Chen D, Geng Y, Huang X, Ouyang P (2016) Molecular cloning, expression and the adjuvant effects of interleukin-8 of channel catfish (Ictalurus Punctatus) against Streptococcus iniae. Sci Rep 6(1):29310. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    He S, Zhang Y, Xu L, Yang Y, Marubashi T, Zhou Z, Yao B (2013) Effects of dietary Bacillus subtilis C-3102 on the production, intestinal cytokine expression and autochthonous bacteria of hybrid tilapia Oreochromis niloticus♀× Oreochromis aureus♂. Aquacult 412:125–130CrossRefGoogle Scholar
  57. 57.
    Wang Y, Ren Z, Fu L, Su X (2016) Two highly adhesive lactic acid bacteria strains are protective in zebrafish infected with Aeromonas hydrophila by evocation of gut mucosal immunity. J Appl Microbiol 120(2):441–451. CrossRefPubMedGoogle Scholar
  58. 58.
    Mohapatra S, Chakraborty T, Prusty AK, Kumar K, Prasad KP, Mohanta KN (2012) Fenvalerate induced stress mitigation by dietary supplementation of multispecies probiotic mixture in a tropical freshwater fish, Labeo rohita (Hamilton). Pestic Biochem Physiol 104(1):28–37. CrossRefGoogle Scholar
  59. 59.
    Liu Y-W, Liu W-H, Wu C-C, Juan Y-C, Wu Y-C, Tsai H-P, Wang S, Tsai Y-C (2016) Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naive adult mice. Brain Res 1631:1–12. CrossRefPubMedGoogle Scholar
  60. 60.
    Ringø E, Salinas I, Olsen R, Nyhaug A, Myklebust R, Mayhew T (2007) Histological changes in intestine of Atlantic salmon (Salmo salar L.) following in vitro exposure to pathogenic and probiotic bacterial strains. Cell Tissue Res 328(1):109–116. CrossRefPubMedGoogle Scholar
  61. 61.
    Merrifield DL, Harper GM, Dimitroglou A, Ringø E, Davies SJ (2010) Possible influence of probiotic adhesion to intestinal mucosa on the activity and morphology of rainbow trout (Oncorhynchus mykiss) enterocytes. Aquac Res 41(8):1268–1272Google Scholar
  62. 62.
    Askarian F, Kousha A, Salma W, Ringø E (2011) The effect of lactic acid bacteria administration on growth, digestive enzyme activity and gut microbiota in Persian sturgeon (Acipenser persicus) and beluga (Huso huso) fry. Aquac Nutr 17(5):488–497. CrossRefGoogle Scholar
  63. 63.
    Dimitroglou A, Merrifield DL, Carnevali O, Picchietti S, Avella M, Daniels C, Güroy D, Davies SJ (2011) Microbial manipulations to improve fish health and production–a Mediterranean perspective. Fish Shellfish Immunol 30(1):1–16. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Mehdi Soltani
    • 1
    • 2
    Email author
  • Komael Pakzad
    • 1
  • Ali Taheri-Mirghaed
    • 1
  • Saeed Mirzargar
    • 1
  • Seyed Pezhman Hosseini Shekarabi
    • 3
  • Parasto Yosefi
    • 4
  • Narges Soleymani
    • 1
  1. 1.Department of Aquatic Animal Health, Faculty of Veterinary MedicineUniversity of TehranTehranIran
  2. 2.Center of Excellence of Aquatic Animal HealthUniversity of TehranTehranIran
  3. 3.Department of Fisheries Science, Science and Research BranchIslamic Azad UniversityTehranIran
  4. 4.Central Research Laboratory, Faculty of Veterinary MedicineUniversity of TehranTehranIran

Personalised recommendations