Skip to main content

Advertisement

Log in

Bacillus amyloliquefaciens Spore Production Under Solid-State Fermentation of Lignocellulosic Residues

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

This study was conducted to elucidate cultivation conditions determining Bacillus amyloliquefaciens B-1895 growth and enhanced spore formation during the solid-state fermentation (SSF) of agro-industrial lignocellulosic biomasses. Among the tested growth substrates, corncobs provided the highest yield of spores (47 × 1010 spores g−1 biomass) while the mushroom spent substrate and sunflower oil mill appeared to be poor growth substrates for spore formation. Maximum spore yield (82 × 1010 spores g−1 biomass) was achieved when 15 g corncobs were moistened with 60 ml of the optimized nutrient medium containing 10 g peptone, 2 g KH2PO4, 1 g MgSO4·7H2O, and 1 g NaCl per 1 l of distilled water. The cheese whey usage for wetting of lignocellulosic substrate instead water promoted spore formation and increased the spore number to 105 × 1010 spores g−1. Addition to the cheese whey of optimized medium components favored sporulation process. The feasibility of developed medium and strategy was shown in scaled up SSF of corncobs in polypropylene bags since yield of 10 × 1011 spores per gram of dry biomass was achieved. In the SSF of lignocellulose, B. amyloliquefaciens B-1895 secreted comparatively high cellulase and xylanase activities to ensure good growth of the bacterial culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Aureli P, Capurso L, Castellazzi AM, Clerici M, Giovannini M, Morelli L, Poli A, Pregliasco F, Salvili F, Zuccotti GV (2011) Probiotics and health: an evidence-based review. Pharmacol Res 63(5):366–376. https://doi.org/10.1016/j.phrs.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  2. Cutting SM (2011) Bacillus probiotics. Food Microbiol 28(2):214–220. https://doi.org/10.1016/j.fm.2010.03.007

    Article  PubMed  Google Scholar 

  3. Holker U, Hofer M, Lenz J (2004) Biotechnological advantages of laboratory scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64(2):175–186. https://doi.org/10.1007/s00253-003-1504-3

    Article  CAS  PubMed  Google Scholar 

  4. Larsen N, Thorsen L, Kpikpi EN, Stuer-Lauridsen B, Cantor MD, Nielsen B, Brockmann E, Derkx PMF, Jespersen L (2014) Characterization of Bacillus spp. strains for use as probiotic additives in pig feed. Appl Microbiol Biotechnol 98(3):1105–1118. https://doi.org/10.1007/s00253-013-5343-6

    Article  CAS  PubMed  Google Scholar 

  5. de Boer AS, Diderichsen B (1991) On the safety of Bacillus subtilis and B. amyloliquefaciens: a review. Appl Microbiol Biotechnol 36(1):1–4

    Article  Google Scholar 

  6. Barbosa TM, Serra CR, La Ragione RM, Woodward MJ, Henriques AO (2005) Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl Environ Microbiol 71(2):968–978. https://doi.org/10.1128/AEM.71.2.968-978.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen KL, Kho WL, You SH, Yeh RH, Tang SW, Hsieh CW (2009) Effects of Bacillus subtilis var. natto and Saccharomyces cerevisiae mixed fermented feed on the enhanced growth performance of broilers. Poult Sci 88(2):309–315. https://doi.org/10.3382/ps.2008-00224

    Article  CAS  PubMed  Google Scholar 

  8. Samanya M, Yamauchi K (2002) Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comp Biochem Phys A 133:95–104

    Article  Google Scholar 

  9. Khardziani T, Kachlishvili E, Sokhadze K, Elisashvili V, Weeks R, Chikindas ML, Chistyakov V (2017) Elucidation of Bacillus subtilis KATMIRA 1933 potential for spore production in submerged fermentation of plant raw materials. Probiotics Antimicro Prot 9(4):435–443. https://doi.org/10.1007/s12602-017-9303-9

    Article  CAS  Google Scholar 

  10. Chistyakov V, Melnikov V, Chikindas ML, Khutsishvili M, Chagelishvili A, Bren A, Kostina N, Cavera V, Elisashvili V (2015) Poultry-beneficial solid-state Bacillus amyloliquefaciens B-1895 fermented soy bean formulation. Biosci Microbiota Food Health 34(1):25–28. https://doi.org/10.12938/bmfh.2014-012

    Article  CAS  PubMed  Google Scholar 

  11. Algburi A, Volski A, Cugini C, Walsh EM, Chistyakov VA, Mazanko MS, Bren AB, Dicks LMT, Chikindas ML (2016) Safety properties and probiotic potential of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895. Adv Microbiol 6(06):432–452. https://doi.org/10.4236/aim.2016.66043

    Article  CAS  Google Scholar 

  12. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  13. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23(3):257–270. https://doi.org/10.1016/0168-1656(92)90074-J

    Article  CAS  Google Scholar 

  14. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  15. Chen ZM, Li Q, Liu HM, Yu N, Xie TJ, Yang MY, Shen P, Chen XD (2010) Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs. Appl Microbiol Biotechnol 85(5):1353–1360. https://doi.org/10.1007/s00253-009-2162-x

    Article  CAS  PubMed  Google Scholar 

  16. Monteiro SM, Clemente JJ, Henriques AO, Gomes RJ, Carrondo MJ, Cunha AE (2005) A procedure for high-yield spore production by Bacillus subtilis. Biotechnol Prog 21(4):1026–1031. https://doi.org/10.1021/bp050062z

    Article  CAS  PubMed  Google Scholar 

  17. Posada-Uribe LF, Romero-Tabarez M, Villegas-Escobar V (2015) Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production. Bioprocess Biosyst Eng 38(10):1879–1888. https://doi.org/10.1007/s00449-015-1428-1

    Article  CAS  PubMed  Google Scholar 

  18. Rao YK, Tsay KJ, WS W, Tzeng YM (2007) Medium optimization of carbon and nitrogen sources for the production of spores from Bacillus amyloliquefaciens B128 using response surface methodology. Process Biochem 42(4):535–541. https://doi.org/10.1016/j.procbio.2006.10.007

    Article  CAS  Google Scholar 

  19. Sen R, Babu KS (2005) Modeling and optimization of the process conditions for biomass production and sporulation of a probiotic culture. Process Biochem 40(7):2531–2538. https://doi.org/10.1016/j.procbio.2004.11.004

    Article  CAS  Google Scholar 

  20. Wangka-Orm C, Deeseenthum S, Leelavatcharamas V (2014) Low cost medium for spore production of Bacillus KKU02 and KKU03 and the effects of the produced spores on growth of giant freshwater prawn (Macrobrachium rosenbergii de Man). Pak J Biol Sci 17(8):1015–1022

    Article  CAS  Google Scholar 

  21. Sella SR, Guizelini BP, Vandenberghe LPS, Medeiros ABP, Soccol CR (2009) Lab-scale production of Bacillus atrophaeus’ spores by solid state fermentation in different types of bioreactors. Braz Arch Biol Technol 52(spe):159–170. https://doi.org/10.1590/S1516-89132009000700021

    Article  Google Scholar 

  22. Zhang YR, Xiong HR, Guo XH (2014) Enhanced viability of Lactobacillus reuteri for probiotics production in mixed solid-state fermentation in the presence of Bacillus subtilis. Folia Microbiol 59(1):31–36. https://doi.org/10.1007/s12223-013-0264-4

    Article  CAS  Google Scholar 

  23. Shi F, Zhu Y (2007) Application of statistically-based experimental designs in medium optimization for spore production of Bacillus subtilis from distillery effluent. BioControl 52(6):845–853. https://doi.org/10.1007/s10526-006-9055-z

    Article  Google Scholar 

Download references

Funding

This study was supported by the Shota Rustaveli National Science Foundation, Georgia, grant No. AR/106/7-280/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Elisashvili.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berikashvili, V., Sokhadze, K., Kachlishvili, E. et al. Bacillus amyloliquefaciens Spore Production Under Solid-State Fermentation of Lignocellulosic Residues. Probiotics & Antimicro. Prot. 10, 755–761 (2018). https://doi.org/10.1007/s12602-017-9371-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9371-x

Keywords