Skip to main content
Log in

Evaluation of Probiotic Lactobacillus fermentum CCM 7421 Administration with Alginite in Dogs

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

There are growing efforts to find applications for various naturally occurring organo-mineral rocks. They have so far been preferentially used in agriculture and forestry; however, medicine and nutrition may also be interesting areas for their application. This study investigates the effects of dietary supplementation with canine-derived probiotic strain Lactobacillus fermentum CCM 7421 in combination with alginite in dogs. Alginite is a loam-like material of volcanic origin composed of clay minerals and fossilised unicellular algae. The effects of these additives on faecal microbiota, faecal characteristics, short-chain fatty acid profile, haematology, serum biochemistry and cellular immunity parameters were monitored. Forty dogs were randomly divided into four treatment groups: control group (C), alginite-supplemented group (A; 1% diet), probiotic group (LF; L. fermentum CCM 7421 at a dose of 109 cfu/day/dog) and combined group (A + LF group); 10 dogs in each group. The experiment lasted for 35 days with a 14-day treatment period (sample collection at days 0, 7, 14 and 35). The results of this straightforward experiment showed beneficial effects in the combined A + LF group. In detail, a decrease in faecal coliforms and clostridia and an increase in lactic acid bacteria, haemoglobin and serum magnesium levels compared to baseline were observed in the A + LF group (P < 0.05). In contrast, sole application of alginite (A group) led to several unexpected effects such as an increase in clostridial population and serum alanine aminotrasferase and a decrease in haemoglobin concentration (P < 0.05). The addition of alginite prevented a decrease in faecal pH and serum mineral content observed in the LF group. This indicates the possibility of applying alginite also in the nutrition of dogs as a combinative additive with probiotic bacteria for restoring optimal acid-alkali balance without affecting positive probiotic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bomba A, Jonecová Z, Koščová J, Nemcová R, Gancarčíková S, Mudroňová D, Sciranková Ľ, Buleca V, Lazar G, Pošivák J, Kašteľ R, Mareková M (2006) The improvement of probiotics efficacy by synergistically acting components of natural origin: a review. Biol 61(6):729–734. https://doi.org/10.2478/s11756-006-0149-y

    Article  Google Scholar 

  2. Böhmer BR, Branner GR, Roth-Maier DA (2005) Precaecal and faecal digestibility of inulin (DP 10-12) or an inulin/Enterococcus faecium mix and effects on nutrient digestibility and microbial gut flora. J Anim Physiol Anim Nutr 89(11-12):388–396. https://doi.org/10.1111/j.1439-0396.2005.00530.x

    Article  CAS  Google Scholar 

  3. Oliveira RPS, Perego P, Oliveira MN, Converti A (2012) Prebiotic effect of inulin on the growth and organic acid profile of Bifidobacterium lactis in co-culture with Streptococcus thermophilus. Chem Eng Trans 27:277–282. https://doi.org/10.3303/CET1227047.

    Article  Google Scholar 

  4. Shams Shargh M, Dastar B, Zerehdaran S, Khomeiri M, Moradi A (2012) Effects of using plant extracts and a probiotic on performance, intestinal morphology, and microflora population in broilers. J Appl Poult Res 21(2):201–208. https://doi.org/10.3382/japr.2010-00145

    Article  CAS  Google Scholar 

  5. Shipradeep Karmakar S, Sahay Khare R, Ojha S, Kundu K, Kundu S (2012) Development of probiotic candidate in combination with essential oils from medicinal plant and their effect on enteric pathogens: a review. Gastroenterol Res Pract ID 457150:1–6. https://doi.org/10.1155/2012/457150

    Article  Google Scholar 

  6. Chytilová M, Mudroňová D, Nemcová R, Gancarčíková S, Buleca V, Koščová J, Tkáčiková Ľ (2013) Anti-inflammatory and immunoregulatory effects of flax-seed oil and Lactobacillus plantarum—Biocenol™ LP96 in gnotobiotic pigs challenged with enterotoxigenic Escherichia coli. Res Vet Sci 95(1):103–109. https://doi.org/10.1016/j.rvsc.2013.02.002

    Article  CAS  PubMed  Google Scholar 

  7. Lauková A, Pogány Simonová M, Chrastinová Ľ, Plachá I, Čobanová K, Formelová Z, Chrenková M, Onduška Ľ, Strompfová V (2016) Benefits of combinative application of probiotic, enterocin M-producing strain Enterococcus faecium AL41 and Eleutherococcus senticosus in rabbits. Folia Microbiol 61(2):169–177. https://doi.org/10.1007/s12223-015-0423-x

    Article  CAS  Google Scholar 

  8. Mack DR (2004) D(-)-lactic acid-producing probiotics, D(-)-lactic acidosis and infants. Can J Gastroenterol 18(11):671–675. https://doi.org/10.1155/2004/342583.

    Article  PubMed  Google Scholar 

  9. WH K, Lau DCY, Huen KF (2006) Probiotics provoked D-lactic acidosis in short bowel syndrome: case report and literature review. HK J Paediatr 11:246–254

    Google Scholar 

  10. Munakata S, Arakawa C, Kohira R, Fujita Y, Fuchigami T, Mugishima H (2010) A case of D-lactic acid encephalopathy associated with use of probiotics. Brain Develop 32(8):691–694. https://doi.org/10.1016/j.braindev.2009.09.024

    Article  Google Scholar 

  11. Rauch R, Földényi R, Magyar B, Barcza I (2003) Study of application of alginite in the treatment of pesticide contaminated groundwater. In: Conference proceeding of 6th International Symposium and Exhibition on Environmental Contamination in Central and Eastern Europe and the Commonwealth of Independent States, 1–4 September 2003, Prague, Czech Republic, Florida State University, Tallahassee, e122. http://www.prague2003.fsu.edu/content/pdf/122.pdf. Accessed 29 September 2003.

  12. Gömöryová E, Vass D, Pichler V, Gömöry (2009) Effect of alginite amendment on microbial activity and soil water content in forest soils. Biol (Bratislava) 64:585–588. doi:https://doi.org/10.2478/s11756-009-0081-z

  13. Litavec T, Barančíková G (2013) Basic characteristic of alginit. In: Houšková B (ed) Vedecké práce VUPOP, vol. 35, VÚPOP Bratislava, pp 97–106. http://www.vupop.sk/dokumenty/vedecke_prace_2013.pdf. Accessed 21 February 2014.

  14. Kulich J, Valko J, Obernauer D (2001) Perspective of exploitation of alginit in plant nutrition. J Centr Eur Agric 2:199–206

    Google Scholar 

  15. Černý I, Kovár M (2014) Impact of the year weather conditions and alginit to elements of yield production of sunflower. In: Conference proceeding Prosperous Oil Crops, 11–12 December 2014, Prague-Větrný Jeníkov, Czech Republic, Czech University of Life Sciences, Prague, pp 120–123. http://konference.agrobiologie.cz/2014-12-12/30_Cerny_Kovar_VPLYV_PESTOVATELSKYCH_PODMIENOK_ROCNIKA_A_ALGINITU_NA_VYBRANE_URODOTVORNE_PRVKY_SLNECNICE_ROCNEJ.pdf Accessed 2 December 2014.

  16. Strompfová V, Marcináková M, Simonová M, Bogovic-Matijasić B, Lauková A (2006) Application of potential probiotic Lactobacillus fermentum AD1 strain in healthy dogs. Anaerobe 12(2):75–79. https://doi.org/10.1016/j.anaerobe.2005.12.001

    Article  PubMed  Google Scholar 

  17. Strompfová V, Lauková A, Gancarčíková S (2012) Effectivity of freeze-dried from of Lactobacillus fermentum AD1-CCM 7421 in dogs. Folia Microbiol 57(4):347–350. https://doi.org/10.1007/s12223-012-0139-0

    Article  CAS  Google Scholar 

  18. Haydel SE, Remenih CM, Williams LB (2008) Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. J Antimicrob Chemother 61(2):353–361. https://doi.org/10.1093/jac/dkm468.

    Article  CAS  PubMed  Google Scholar 

  19. Pettit RE (2004) Organic matter, humus, humate, humic acid, fulvic acid and humin: their importance in soil fertility and plant health. http://www.humates.com/pdf/ORGANICMATTERPettit.pdf. Accessed 30 May 2008

  20. Tikhonov VV, Yakushev AV, Zavgorodnyaya YA, Byzov BA, Demin VV (2010) Effects of humic acids on the growth of bacteria. Euras Soil Sci 43(3):305–313. https://doi.org/10.1134/S1064229310030087

    Article  Google Scholar 

  21. Strompfová V, Kubašová I, Farbáková J, Gancarčíková S, Mudroňová D, Maďari A, Lauková A (2015) Experimental application of Lactobacillus fermentum CCM 7421 in combination with chlorophyllin in dogs. Appl Microbiol Biotechnol 99(20):8681–8690. https://doi.org/10.1007/s00253-015-6724-9

    Article  CAS  PubMed  Google Scholar 

  22. Bermudez-Brito M, Plaza-Díaz J, Munoz-Quezada S, Llorente CG, Gil A (2012) Probiotic mechanisms of action. Ann Nutr Metab 61(2):160–174. https://doi.org/10.1159/000342079

    Article  CAS  Google Scholar 

  23. Chen X, Dong M, Sun X (2013) Mechanisms of action and applications of probiotics for the treatment of Clostridium difficile infection. In: Mendéz-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Center, Badajoz, pp 1154–1163. http://www.formatex.info/microbiology4/vol2/1154-1163.pdf. Accessed 10 December 2013.

  24. Ying C, Chunmin Y, Qingsen L, Mingzhou G, Yunsheng Y, Gaoping M, Ping W (2011) Effects of simulated weightlessness on tight junction protein occludin and Zonula Occluden-1 expression levels in the intestinal mucosa of rats. J Huazhong Univ Sci Technolog Med Sci 31(1):26–32. https://doi.org/10.1007/s11596-011-0145-5

    Article  CAS  PubMed  Google Scholar 

  25. Zhao Y, Qin G, Sun Z, Che D, Bao N, Zhang X (2011) Effects of soybean agglutinin on intestinal barrier permeability and tight junction protein expression in weaned piglets. Int J Mol Sci 12(12):8502–8512. https://doi.org/10.3390/ijms12128502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanstock TL, Clayton EH, Li KM, Mallet PE (2004) Anxiety and aggression associated with the fermentation of carbohydrates in the hindgut of rats. Physiol Behav 82(2-3):357–368. https://doi.org/10.1016/j.physbeh.2004.04.002

    Article  CAS  PubMed  Google Scholar 

  27. Hoppe M, Önning G, Berggren A, Hulthén L (2015) Probiotic strain Lactobacillus plantarum 299v increases iron absorption from an iron-supplemented fruit drink: a double-isotope cross-over single-blind study in women of reproductive age. Br J Nutr 144(08):1195–1202. https://doi.org/10.1017/S000711451500241X

    Article  CAS  Google Scholar 

  28. Maggini S, Wintergerst ES, Beveridge S, Hornig DH (2007) Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr 98:S29–S35. https://doi.org/10.1017/S0007114507832971.

    Article  CAS  PubMed  Google Scholar 

  29. Vetvička V, Baigorri R, Zamarreno AM, Garcia-Mina J, Yvin J-C (2010) Glucan and humic acid: synergistic effects on the immune system. J Med Food 13(4):863–869. https://doi.org/10.1089/jmf.2009.0178

    Article  CAS  PubMed  Google Scholar 

  30. Pelto L, Isolauri E, Lilius EM, Nuutila J, Salminen S (1998) Probiotic bacteria down-regulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects. Clin Exp Allergy 28(12):1474–1479. https://doi.org/10.1046/j.1365-2222.1998.00449.x

    Article  CAS  PubMed  Google Scholar 

  31. Prvulović D, Kojić D, Grubor-Lajšić G, Košarčić S (2008) The effects of dietary inclusion of hydrated aluminosilicate on performance and biochemical parameters of broiler chickens. Turk J Vet Anim Sci 32:183–189

    Google Scholar 

  32. Duan QW, Li JT, Gong LM, Wu H, Zhang LY (2013) Effects of graded levels of montmorillonite on performance, haematological parameters and bone mineralization in weaned pigs. Asian Australas J Anim Sci 26(11):1614–1621. https://doi.org/10.5713/ajas.2012.12698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ooi LG, Liong M-T (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 11(6):2499–2522. https://doi.org/10.3390/ijms11062499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are most grateful to all the dog owners for their consent to the testing and their assistance during sampling procedures and to the company Algiwo s.r.o. for providing the alginite material.

Funding

The study was funded by the Slovak Scientific Agency VEGA (no. 2/0012/16 and no. 2/0056/13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viola Strompfová.

Ethics declarations

Ethical Approval

All care and experimental procedures involving animals followed the guidelines stated in the Guide for the Care and Use of Animals approved by the State Veterinary and Food Administration of the Slovak Republic and by the Ethics Commission of the Institute of Animal Physiology, Slovak Academy of Sciences (no. 749/08-221). This article does not contain any studies with human participants performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strompfová, V., Kubašová, I., Farbáková, J. et al. Evaluation of Probiotic Lactobacillus fermentum CCM 7421 Administration with Alginite in Dogs. Probiotics & Antimicro. Prot. 10, 577–588 (2018). https://doi.org/10.1007/s12602-017-9370-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9370-y

Keywords

Navigation