Skip to main content

Advertisement

Log in

Mudskipper (Boleophthalmus pectinirostris) Hepcidin-1 and Hepcidin-2 Present Different Gene Expression Profile and Antibacterial Activity and Possess Distinct Protective Effect against Edwardsiella tarda Infection

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Hepcidins are small cysteine-rich antimicrobial peptides that play an important role in fish immunity against pathogens. Most fish species have two or more hepcidin homologs that have distinct functions. This study investigated the immune functions of mudskipper (Boleophthalmus pectinirostris) hepcidin-1 (BpHep-1) and hepcidin-2 (BpHep-2) in vitro and in vivo. Upon infection with Edwardsiella tarda, the expression of BpHep-1 and BpHep-2 mRNA in immune tissues was significantly upregulated, but the expression profiles were different. Chemically synthesized BpHep-1 and BpHep-2 mature peptides exhibited selective antibacterial activity against various bacterial species, and BpHep-2 exhibited a stronger antibacterial activity and broader spectrum than BpHep-1. BpHep-1 and BpHep-2 both inhibited the growth of E. tarda in vitro, with the latter being more effective than the former. In addition, both peptides induced hydrolysis of purified bacterial genomic DNA (gDNA) or gDNA in live bacteria. In vivo, an intraperitoneal injection of 1.0 μg/g BpHep-2 significantly improved the survival rate of mudskippers against E. tarda infection compared with 0.1 μg/g BpHep-2 or 0.1 and 1.0 μg/g BpHep-1. Similarly, only BpHep-2 treatment effectively reduced the tissue bacterial load in E. tarda-infected mudskippers. Furthermore, treatment with 1.0 or 10.0 μg/ml BpHep-2 promoted the phagocytic and bactericidal activities of mudskipper monocytes/macrophages (MO/MФ). However, only the highest dose (10.0 μg/ml) of BpHep-1 enhanced phagocytosis, and BpHep-1 exerted no obvious effects on bactericidal activity. In conclusion, BpHep-2 is a stronger bactericide than BpHep-1 in mudskippers, and acts not only by directly killing bacteria but also through an immunomodulatory function on MO/MФ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Hancock RE, Haney EF, Gill EE (2016) The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol 16:321–334, 5, https://doi.org/10.1038/nri.2016.29

  2. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. https://doi.org/10.1038/nrmicro1098

    Article  CAS  Google Scholar 

  3. Katzenback BA (2015) Antimicrobial peptides as mediators of innate immunity in teleosts. Biology (Basel) 4:607–639, 4, https://doi.org/10.3390/biology4040607

  4. Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276(11):7806–7810. https://doi.org/10.1074/jbc.M008922200

    Article  CAS  PubMed  Google Scholar 

  5. Hocquellet A, le Senechal C, Garbay B (2012) Importance of the disulfide bridges in the antibacterial activity of human hepcidin. Peptides 36(2):303–307. https://doi.org/10.1016/j.peptides.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  6. Maisetta G, Petruzzelli R, Brancatisano FL, Esin S, Vitali A, Campa M, Batoni G (2010) Antimicrobial activity of human hepcidin 20 and 25 against clinically relevant bacterial strains: effect of copper and acidic pH. Peptides 31(11):1995–2002. https://doi.org/10.1016/j.peptides.2010.08.007

    Article  CAS  PubMed  Google Scholar 

  7. Alvarez CA, Guzmán F, Cárdenas C, Marshall SH, Mercado L (2014) Antimicrobial activity of trout hepcidin. Fish Shellfish Immunol 41(1):93–101. https://doi.org/10.1016/j.fsi.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  8. Enculescu M, Metzendorf C, Sparla R, Hahnel M, Bode J, Muckenthaler MU, Legewie S (2017) Modelling systemic iron regulation during dietary iron overload and acute inflammation: role of hepcidin-independent mechanisms. PLoS Comput Biol 13(1):e1005322. https://doi.org/10.1371/journal.pcbi.1005322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu D, Gan ZS, Ma W, Xiong HT, Li YQ, Wang YZ, Du HH (2017) Synthetic porcine hepcidin exhibits different roles in Escherichia coli and salmonella infections. Antimicrob Agents Chemother 61(10):e02638–e02616. https://doi.org/10.1128/AAC.02638-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lombardi L, Maisetta G, Batoni G, Tavanti A (2015) Insights into the antimicrobial properties of hepcidins: advantages and drawbacks as potential therapeutic agents. Molecules 20(4):6319–6341. https://doi.org/10.3390/molecules20046319

    Article  CAS  PubMed  Google Scholar 

  11. Fang YQ, Shen CB, Luan N, Yao HM, Long CB, Lai R, Yan XW (2017) In vivo antimalarial activity of synthetic hepcidin against Plasmodium berghei in mice. Chin J Nat Med 15(3):161–167. https://doi.org/10.1016/S1875-5364(17)30032-8

    Article  PubMed  Google Scholar 

  12. Hirono I, Hwang JY, Ono Y, Kurobe T, Ohira T, Nozaki R, Aoki T (2005) Two different types of hepcidins from the Japanese flounder Paralichthys olivaceus. FEBS J 272(20):5257–5264. https://doi.org/10.1111/j.1742-4658.2005.04922.x

    Article  CAS  PubMed  Google Scholar 

  13. Xu Q, Cheng CH, Hu P, Ye H, Chen Z, Cao L, Chen L, Shen Y, Chen L (2008) Adaptive evolution of hepcidin genes in antarctic notothenioid fishes. Mol Biol Evol 25(6):1099–1112. https://doi.org/10.1093/molbev/msn056

    Article  CAS  PubMed  Google Scholar 

  14. Lauth X, Babon JJ, Stannard JA, Singh S, Nizet V, Carlberg JM, Ostland VE, Pennington MW, Norton RS, Westerman ME (2005) Bass hepcidin synthesis, solution structure, antimicrobial activities and synergism, and in vivo hepatic response to bacterial infections. J Biol Chem 280(10):9272–9282. https://doi.org/10.1074/jbc.M411154200

    Article  CAS  PubMed  Google Scholar 

  15. Huang PH, Chen JY, Kuo CM (2007) Three different hepcidins from tilapia, Oreochromis mossambicus: analysis of their expressions and biological functions. Mol Immunol 44(8):1922–1934. https://doi.org/10.1016/j.molimm.2006.09.031

    Article  CAS  PubMed  Google Scholar 

  16. Chen SL, Li W, Meng L, Sha ZX, Wang ZJ, Ren GC (2007) Molecular cloning and expression analysis of a hepcidin antimicrobial peptide gene from turbot (Scophthalmus maximus). Fish Shellfish Immunol 22:172–181, 3, https://doi.org/10.1016/j.fsi.2006.04.004

  17. Pereiro P, Figueras A, Novoa B (2012) A novel hepcidin-like in turbot (Scophthalmus maximus L.) highly expressed after pathogen challenge but not after iron overload. Fish Shellfish Immunol 32(5):879–889. https://doi.org/10.1016/j.fsi.2012.02.016

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Yu LP, Li MF, Sun L (2014) Turbot (Scophthalmus maximus) hepcidin-1 and hepcidin-2 possess antimicrobial activity and promote resistance against bacterial and viral infection. Fish Shellfish Immunol 38(1):127–134. https://doi.org/10.1016/j.fsi.2014.03.011

    Article  CAS  PubMed  Google Scholar 

  19. Zhou JG, Wei JG, Xu D, Cui HC, Yan Y, Ou-Yang ZL, Huang XH, Huang YH, Qin QW (2011) Molecular cloning and characterization of two novel hepcidins from orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol 30(2):559–568. https://doi.org/10.1016/j.fsi.2010.11.021

    Article  CAS  PubMed  Google Scholar 

  20. Qu H, Chen B, Peng H, Wang K (2013) Molecular cloning, recombinant expression, and antimicrobial activity of EC-hepcidin3, a new four-cysteine hepcidin isoform from Epinephelus coioides. Biosci Biotechnol Biochem 77(1):103–110. https://doi.org/10.1271/bbb.120600

    Article  CAS  PubMed  Google Scholar 

  21. Neves JV, Caldas C, Vieira I, Ramos MF, Rodrigues PN (2015) Multiple hepcidins in a teleost fish, Dicentrarchus labrax: different hepcidins for different roles. J Immunol 195(6):2696–2709. https://doi.org/10.4049/jimmunol.1501153

    Article  CAS  PubMed  Google Scholar 

  22. Álvarez CA, Acosta F, Montero D, Guzmán F, Torres E, Vega B, Mercado L (2016) Synthetic hepcidin from fish: uptake and protection against Vibrio anguillarum in sea bass (Dicentrarchus labrax). Fish Shellfish Immunol 55:662–670. https://doi.org/10.1016/j.fsi.2016.06.035

    Article  CAS  PubMed  Google Scholar 

  23. Chi JR, Liao LS, Wang RG, Jhu CS, Wu JL, Hu SY (2015) Molecular cloning and functional characterization of the hepcidin gene from the convict cichlid (Amatitlania nigrofasciata) and its expression pattern in response to lipopolysaccharide challenge. Fish Physiol Biochem 41(2):449–461. https://doi.org/10.1007/s10695-014-9996-6

    Article  CAS  PubMed  Google Scholar 

  24. Ke F, Wang Y, Yang CS, Xu C (2015) Molecular cloning and antibacterial activity of hepcidin from Chinese rare minnow (Gobiocypris rarus). Electron J Biotechnol 18(3):169–174. https://doi.org/10.1016/j.ejbt.2015.03.003

    Article  CAS  Google Scholar 

  25. Gui L, Zhang P, Zhang Q, Zhang J (2016) Two hepcidins from spotted scat (Scatophagus argus) possess antibacterial and antiviral functions in vitro. Fish Shellfish Immunol 50:191–199. https://doi.org/10.1016/j.fsi.2016.01.038

    Article  CAS  PubMed  Google Scholar 

  26. Wang D, Li S, Zhao J, Liu H, Lu T, Yin J (2016) Genomic organization, expression and antimicrobial activity of a hepcidin from taimen (Hucho taimen, Pallas). Fish Shellfish Immunol 56:303–309. https://doi.org/10.1016/j.fsi.2016.07.027

    Article  CAS  PubMed  Google Scholar 

  27. Li Z, Hong WS, Qiu HT, Zhang YT, Yang MS, You XX, Chen SX (2016) Cloning and expression of two hepcidin genes in the mudskipper (Boleophthalmus pectinirostris) provides insights into their roles in male reproductive immunity. Fish Shellfish Immunol 56:239–247. https://doi.org/10.1016/j.fsi.2016.07.025

    Article  CAS  PubMed  Google Scholar 

  28. Nair A, Sruthy KS, Chaithanya ER, Sajeevan TP, Bright Singh IS, Philip R (2017) Molecular characterisation of a novel isoform of hepatic antimicrobial peptide, hepcidin (Le-Hepc), from Leiognathus equulus and analysis of its functional properties in silico. Probiotics Antimicrob Proteins 9(4):473–482. https://doi.org/10.1007/s12602-017-9294-6

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Han X, Chen X, Yu S, Chai Y, Zhai T, Zhu Q (2017) Molecular characterization and functional analysis of the hepcidin gene from roughskin sculpin (Trachidermus fasciatus). Fish Shellfish Immunol 68:349–358. https://doi.org/10.1016/j.fsi.2017.07.044

    Article  CAS  PubMed  Google Scholar 

  30. Massosilva JA, Diamond G (2014) Antimicrobial peptides from fish. Pharmaceuticals 7(3):265–310. https://doi.org/10.3390/ph7030265

    Article  CAS  Google Scholar 

  31. Hilton KB, Lambert LA (2008) Molecular evolution and characterization of hepcidin gene products in vertebrates. Gene 415:40–48, 1-2, https://doi.org/10.1016/j.gene.2008.02.016

  32. Muncaster S, Kraakman K, Gibbons O, Mensink K, Forlenza M, Jacobson G, Bird S (2017) Antimicrobial peptides within the yellowtail kingfish (Seriola lalandi). Dev Comp Immunol. https://doi.org/10.1016/j.dci.2017.04.014

  33. Liu QN, Xin ZZ, Zhang DZ, Jiang SH, Chai XY, Wang ZF, Li CF, Zhou CL, Tang BP (2016) cDNA cloning and expression analysis of a hepcidin gene from yellow catfish Pelteobagrus fulvidraco (Siluriformes: Bagridae). Fish Shellfish Immunol 60:247–254. https://doi.org/10.1016/j.fsi.2016.10.049

    Article  CAS  PubMed  Google Scholar 

  34. Cai L, Cai JJ, Liu HP, Fan DQ, Peng H, Wang KJ (2012) Recombinant medaka (Oryzias melastigmus) pro-hepcidin: multifunctional characterization. Comp Biochem Physiol B Biochem Mol Biol 161(2):140–147. https://doi.org/10.1016/j.cbpb.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  35. Chen J, Chen Q, Lu XJ, Chen J (2016) The protection effect of LEAP-2 on the mudskipper (Boleophthalmus pectinirostris) against Edwardsiella tarda infection is associated with its immunomodulatory activity on monocytes/macrophages. Fish Shellfish Immunol 59:66–76. https://doi.org/10.1016/j.fsi.2016.10.028

    Article  CAS  PubMed  Google Scholar 

  36. Yang J, Lu XJ, Chai FC, Chen J (2016) Molecular characterization and functional analysis of a piscidin gene in large yellow croaker (Larimichthys crocea). Zool Res 37(6):347–355. 10.13918/j.issn.2095-8137.2016.6.347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang M, Li MF, Sun L (2014) NKLP27: a teleost NK-lysin peptide that modulates immune response, induces degradation of bacterial DNA, and inhibits bacterial and viral infection. PLoS One 9(9):e106543. https://doi.org/10.1371/journal.pone.0106543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li HX, Lu XJ, Li CH, Chen J (2015) Molecular characterization of the liver-expressed antimicrobial peptide 2 (LEAP-2) in a teleost fish, Plecoglossus altivelis: antimicrobial activity and molecular mechanism. Mol Immunol 65(2):406–415. https://doi.org/10.1016/j.molimm.2015.02.022

    Article  CAS  PubMed  Google Scholar 

  39. Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti-Infect Ther 5(6):951–959. https://doi.org/10.1586/14787210.5.6.951

    Article  CAS  PubMed  Google Scholar 

  40. Pan CY, Peng KC, Lin CH, Chen JY (2011) Transgenic expression of tilapia hepcidin 1-5 and shrimp chelonianin in zebrafish and their resistance to bacterial pathogens. Fish Shellfish Immunol 31:275–285, 2, https://doi.org/10.1016/j.fsi.2011.05.013

  41. Hsieh JC, Pan CY, Chen JY (2010) Tilapia hepcidin (TH)2-3 as a transgene in transgenic fish enhances resistance to Vibrio vulnificus infection and causes variations in immune-related genes after infection by different bacterial species. Fish Shellfish Immunol 29(3):430–439. https://doi.org/10.1016/j.fsi.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  42. Pöppel AK, Vogel H, Wiesner J, Vilcinskas A (2015) Antimicrobial peptides expressed in medicinal maggots of the blow fly Lucilia sericata show combinatorial activity against bacteria. Antimicrob Agents Chemother 59(5):2508–2514. https://doi.org/10.1128/AAC.05180-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiang J, Zhou M, Wu Y, Chen T, Shaw C, Wang L (2017) The synergistic antimicrobial effects of novel bombinin and bombinin H peptides from the skinsecretion of Bombina orientalis. Biosci Rep 37(5):BSR20170967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wan M, van der Does AM, Tang X, Lindbom L, Agerberth B, Haeggstrom JZ (2014) Antimicrobial peptide LL-37 promotes bacterial phagocytosis by human macrophages. J Leukoc Biol 95(6):971–981. https://doi.org/10.1189/jlb.0513304

    Article  CAS  PubMed  Google Scholar 

  45. Li CH, Lu XJ, Li MY, Chen J (2015) Cathelicidin modulates the function of monocytes/macrophages via the P2X7 receptor in a teleost, Plecoglossus altivelis. Fish Shellfish Immunol 47(2):878–885. https://doi.org/10.1016/j.fsi.2015.10.031

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by the Program for the National Natural Science Foundation of China (31772826), the Natural Science Foundation of Zhejiang Province (LZ18C190001, LQ17C190001), the Natural Science Foundation of Ningbo City of China (2017A610284), the Scientific Innovation Team Project of Ningbo (2015C110018), the Scientific Research Foundation of Graduate School of Ningbo University (G16023), and the KC Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Chen.

Ethics declarations

All experiments were performed in accordance with the Experimental Animal Management Law of China and were approved by the Animal Ethics Committee of Ningbo University.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Nie, L. & Chen, J. Mudskipper (Boleophthalmus pectinirostris) Hepcidin-1 and Hepcidin-2 Present Different Gene Expression Profile and Antibacterial Activity and Possess Distinct Protective Effect against Edwardsiella tarda Infection. Probiotics & Antimicro. Prot. 10, 176–185 (2018). https://doi.org/10.1007/s12602-017-9352-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9352-0

Keywords

Navigation