Abstract
The aims of the present study were to develop and evaluate different formulations of probiotic and synbiotic sorbets produced with jussara (Euterpe edulis) pulp, polydextrose, Lactobacillus acidophilus LA3, and Lactobacillus paracasei BGP1. The pasteurized jussara pulp presented high content of phenolic compounds, especially anthocyanins, which were not inhibitory to the probiotics used in this study. The levels of polyphenols and anthocyanins present in the sorbets were also high and kept stable for 120 days, as well as the populations of both probiotics. On the other hand, probiotic populations reduced ca. 4 log CFU/g when exposed to simulated gastrointestinal fluids. Altogether, the sorbets produced in this study showed interesting results, indicating the viability on producing functional foods with probiotics, prebiotics, and other components that are rich in polyphenols, such as jussara pulp. The combination of these elements can improve the health beneficial effects of these compounds and provide important advantages to the intestinal microbiota of consumers.

References
Pizo MA, Vieira EM (2004) Palm harvesting affects seed predation of Euterpe edulis, a threatened palm of the Brazilian Atlantic forest. Braz J Biol 64:669–676
Barroso RM, Reis A, Hanazaki N (2010) Etnoecologia e etnobotânica da palmeira juçara (Euterpe edulis Martius) em comunidades quilombolas do Vale do Ribeira, São Paulo. Acta Bot Bras 24:518–528
Von Allmen C, Morellato LPC, Pizo MA (2004) Seed predation under high seed density condition: the palm Euterpe edulis in the Brazilian Atlantic Forest. J Trop Ecol 20:471–474
Lorenzi H, Moreira De Souza H, Tadeu De Medeiros J, Coelho De Cerqueira LS, Ferreira E (2004) Palmeiras Brasileiras e Exóticas Cultivadas. Instituto Plantarum de Estudos da Flora Ltda, Nova Odessa
Silva MGCPC, Barretto WS, Serôdio MH (2004) Comparação nutricional da polpa dos frutos de juçara e de açaí Ilhéus. Centro de Pesquisa do Cacau, Ministério da Agricultura, Agropecuária e Abastecimento http://www.ceplacgovbr/indexasp. Accessed 08 May 2017
Bicudo MP, Ribani R, Beta T (2014) Anthocyanins, phenolic acids and antioxidant properties of juçara fruits (Euterpe edulis m) along the on-tree ripening process. Plant Foods Hum Nutr 69:142–147
Hidalgo M, Oruna-Concha MJ, Kolida S, Walton GE, Kallithraka S, Spencer JPE, Gibson GR, Pascual-Teresa S (2012) Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J Agric Food Chem 60:3882–3890
Valdés L, Cuervo A, Salazar N, Ruas-Mediedo P, Gueimonde M, González S (2015) The relationship between phenolic compounds from diet and microbiota: impact on human health. Food Funct 6:2424–2439
Yousuf B, Gul K, Wani AA, Singh P (2015) Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review. Crit Rev Food Sci Nutr 56:2223–2230
Saad SMI (2006) Probioticos e prebioticos: o estado da arte. Braz J Pharm Sci 42:1–16
Karaaslan M, Ozden M, Vardin H, Turkoglu H (2011) Phenolic fortification of yogurt using grape and callus extracts. LWT Food Sci Technol 44:1065–1072
Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth Enzymol 299:152–178
Giusti MM, Wrolstad RE (2001) Anthocyanins: characterization and measurement with UV visible spectroscopy. In: Wrolstad RE (ed) Current protocols in food analytical chemistry. Wiley, New York
Lee J (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int 88:1269–1278
Martin JGP, Porto E, Corrêa CB, Alencar SM, Gloria EM, Cabral ISR, Aquino LM (2012) Antimicrobial potential and chemical composition of agroindustrial wastes. J Nat Prod 5:27–36
Zago M, Fornasari ME, Carminati D, Burns P, Suàrez V, Vinderola G, Reinheimer J, Giraffa G (2011) Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol 28:1033–1040
ISO 8261:2001 (2001). Milk and milk products -- General guidance for the preparation of test samples, initial suspensions and decimal dilutions for microbiological examination. Retrieved from https://www.iso.org/about-us.html
Gbassi GK, Vandamme T, Ennahar S, Marchioni E (2009) Microencapsulation of Lactobacillus plantarum spp. in an alginate matrix coated with whey proteins. Int J Food Microbiol 129:103–105
Rufino MSM, Alves RE, Brito ES, Pérez-Jiménez J, Saura-Calixto F, Mancini-Filho J (2010) Bioactive compounds and antioxidant capacities of 18 nontraditional tropical fruits from Brazil. Food Chem 121:996–1002
Borges GSC, Vieira FGK, Copetti C, Gonzaga LV, Fett R (2011) Optimization of the extraction of flavanols and anthocyanins from the fruit pulp of Euterpe edulis using the response surface methodology. Food Res Int 44:708–715
Brito ES, Araújo MCP, Alves RE, Carkeet C, Clevidence BA, Novotny JA (2007) Anthocyanins present in selected tropical fruits: acerola, jambolão, jussara and guajiru. J Agric Food Chem 55:9389–9394
Rodríguez H, Curiel JA, Landete JM, Rivas B, Felipe FL, Gómez-Cordovés C, Mancheño JM, Muñoz R (2009) Food phenolics and lactic acid bacteria. Int J Food Microbiol 132:79–90
Duda-Chodak A, Tarko T, Satora P, Sroka P (2015) Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr 54:325–341
García-Ruiz A, Bartolomé B, Martínez-Rodríguez AJ, Pueyo E, Martín-Álvarez PJ, Moreno-Arribas MV (2008) Potential of phenolic compounds for controlling lactic acid bacteria growth in wine. Food Control 19:835–841
Steed H, Macfarlane GT, Blackett KL, Bahrami B, Reynolds N, Walsh SV, Cummings JH, Macfarlane S (2010) Clinical trial: the microbiological and immunological effects of synbiotic consumption—a randomized double-blind placebo-controlled study in active Crohn’s disease. Aliment Pharmacol Ther 32:872–883
Röytiö H, Ouwehand AC (2014) The fermentation of polydextrose in the large intestine and its beneficial effects. Benefic Microbes 5:305–314
Mäkeläinen H, Saarinen M, Stowell J, Rautonen N, Ouwehand AC (2010) Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures. Benefic Microbes 1:139–148
Sharma RJ, Gupta RC, Singh S, Bansal AK, Singh IP (2016) Stability of anthocyanins and anthocyanidins-enriched extracts, and formulations of fruit pulp of Eugenia jambolana (“jamun”). Food Chem 190:808–817
Schwartz SJ, Von Elbee JH, Giusti MM (2010) Corantes. In: Damodaran S, Parkin KL, Fennema OR (eds) Química de alimentos de Fennema, 4th edn. Artmed, Porto Alegre
Jakobek L (2015) Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem 175:556–567
Rein M (2005) Copigmentation reactions and color stability of berry anthocyanins. Dissertation, University of Helsinki
Gris EF, Falcão LD, Ferreira EA, Luiz MTB (2004) Avaliação do tempo de meia-vida de antocianinas de uvas Cabernet Sauvignon em “sorbet”. Bol CEPPA 22:375–386
Laparra JM, Sanz Y (2010) Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res 61:219–225
Williamson G, Clifford MN (2010) Colonic metabolites of berry polyphenols: the missing link to biological activity? Br J Nutr 104:S48–S66
Tripathi MK, Giri SK (2014) Probiotic functional foods: survival of probiotics during processing and storage. J Funct Foods 9:225–241
Tzounis X, Vulevic J, Kuhnle GGC, George T, Leonczak J, Gibson GR, Kwik-Uribe C, Spencer JPE (2008) Flavanol monomer-induced changes to the human faecal microflora. Br J Nutr 99:782–792
Lee HC, Jenner AM, Low CS, Lee YK (2006) Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol 157:876–884
Sourabh A, Kanwar SS, Sud RG, Ghabru A, Sharma OP (2013) Influence of phenolic compounds of Kangra tea [Camellia sinensis (L) O Kuntze] on bacterial pathogens and indigenous bacterial probiotics of Western Himalayas. Braz J Microbiol 44:709–715
Shin JS, Chung HS (2015) Antibacterial activities of phenolic components from Camellia sinensis L on pathogenic microorganisms. J Food Sci Nutr 12:135–140
Sagdic O, Ozturk I, Cankurt H, Tornuk F (2012) Interaction between some phenolic compounds and probiotic bacterium in functional ice cream production. Food Bioprocess Technol 5:2964–2971
Favaro-Trindade CS, Bernardi S, Bodini RB, Balieiro JCC, Almeida E (2006) Sensory acceptability and stability of probiotic microorganisms and vitamin C in fermented acerola (Malpighia emarginata DC) ice cream. J Food Sci 71:492–495
Favaro-Trindade CS, Balieiro JCC, Dias PF, Sanino FA, Boschini C (2007) Effects of culture, pH and fat concentration on melting rate and sensory characteristics of probiotic fermented yellow Mombin (Spondias mombin L) ice creams. Food Sci Technol Int 13:285–291
Homayouni A, Azizi A, Javadi M, Mahdipour S, Ejtahed H (2012) Factors influencing probiotic survival in ice cream: a review. Int J Dairy Sci 7:1–10
Mizota T (1996) Functional and nutritional foods containing bifidogenic factors. Bull Int Dairy Fed 313:31–35
Costa MGM (2014) Desenvolvimento de sorvete simbiótico de açaí (Euterpe oleracea) com Lactobacillus rhamnosus GG e resistência do probiótico em um modelo de digestão gastrintestinal in vitro. Academic Thesis, University of São Paulo
Ranadheera RDCS, Baines SK, Adams MC (2010) Importance of food in probiotic efficacy. Food Res Int 43:1–7
Bedani R, Rossi EA, Saad SMI (2013) Impact of inulin and okara on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions. Food Microbiol 34:382–389
Ranadheera CS, Evans CA, Adams MC, Baines SK (2012) In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat's milk ice cream and yogurt. Food Res Int 49:619–625
Acknowledgments
The authors are thankful to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for financial support and scholarship, to Alicon Agroindustrial, Sacco Brasil, DuPont, and J.R.Cenzi for providing the resources used in this study and to Marcelo Thomazini for technical support.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Marinho, J.F.U., da Silva, M.P., Mazzocato, M.C. et al. Probiotic and Synbiotic Sorbets Produced with Jussara (Euterpe edulis) Pulp: Evaluation Throughout the Storage Period and Effect of the Matrix on Probiotics Exposed to Simulated Gastrointestinal Fluids. Probiotics & Antimicro. Prot. 11, 264–272 (2019). https://doi.org/10.1007/s12602-017-9346-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12602-017-9346-y