Skip to main content

Aciduric Strains of Lactobacillus reuteri and Lactobacillus rhamnosus, Isolated from Human Feces, Have Strong Adhesion and Aggregation Properties

Abstract

Human feces were streaked onto MRS Agar adjusted to pH 2.5, 3.0, and 6.4, respectively, and medium supplemented with 1.0% (w/v) bile salts. Two aciduric strains, identified as Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 (based on 16S rDNA and recA sequences), were non-hemolytic and did not hydrolyze mucin. The surface of Lactobacillus reuteri HFI-LD5 cells has a weak negative charge, whereas Lactobacillus rhamnosus HFI-K2 has acidic and basic properties, and produces exopolysaccharides (EPS). None of the strains produce bacteriocins. Both strains are resistant to several antibiotics, including sulfamethoxazole-trimethoprim and sulphonamides. The ability of Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 to grow at pH 2.5 suggests that they will survive passage through the stomach. EPS production may assist in binding to intestinal mucus, especially in the small intestinal tract, protect epithelial cells, and stimulate the immune system. Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 may be used as probiotics, especially in the treatment of small intestinal bacterial overgrowth (SIBO).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Juge N (2012) Microbial adhesins to gastrointestinal mucus. Trends Microbiol 20:30–39

    CAS  Article  Google Scholar 

  2. Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14:141–153

    CAS  Article  Google Scholar 

  3. Holzapfel WH, Haberer P, Snel J, Schillinger U, Huis In’T Veld JHJ (1998) Overview of gut flora and probiotics. Int J Food Microbiol 41:85–101

    CAS  Article  Google Scholar 

  4. Dongarrà ML, Rizzello V, Muccio L, Fries W, Cascio A, Bonaccorsi I et al (2013) Mucosal immunology and probiotics. Curr Allergy Asthma Rep 13:19–26

    Article  Google Scholar 

  5. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703

    Article  Google Scholar 

  6. Corrazza GR, Menozzi MG, Strocchi A, Rasciti L, Vaira D, Lecchini R et al (1990) The diagnosis of small bowel bacterial overgrowth: reliability of jejunal culture and inadequacy of breath hydrogen testing. Gastroenterol 98:302–309

    Article  Google Scholar 

  7. Maynard CL, Elson CO, Hatton RD, Weaver CT (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489:231–241

    CAS  Article  Google Scholar 

  8. Ghoshal UC, Srivastava D, Ghoshal U, Misra A (2014) Breath tests in the diagnosis of small intestinal bacterial overgrowth in patients with irritable bowel syndrome in comparison with quantitative upper gut aspirate culture. Eur J Gastroenterol Hepatol 26:753–760

    CAS  Article  Google Scholar 

  9. Ghoshal UC, Shukla R, Ghoshal U (2017) Small intestinal bacterial overgrowth and irritable bowel syndrome: a bridge between functional organic dichotomy. Gut Liver 11(2):196–208

    Article  Google Scholar 

  10. Pyleris E, Giamarellos-Bourboulis EJ, Tzivras D, Koussoulas V, Barbatzas C, Pimentel M (2012) The prevalence of overgrowth by aerobic bacteria in the small intestine by small bowel culture: relationship with irritable bowel syndrome. Dig Dis Sci 57:1321–1329

    Article  Google Scholar 

  11. Gaon D, Garmendia C, Murrielo NO, de Cucco Games A, Cerchio A, Quintas R et al (2002) Effect of Lactobacillus strains (L. casei and L. acidophillus strains cerela) on bacterial overgrowth-related chronic diarrhea. Medicina 62:159–163

    Google Scholar 

  12. Di Stefano M, Miceli E, Missanelli A, Mazzochi S, Corazza GR (2005) Absorbable vs. non-absorbable antibiotics in the treatment of small intestine bacterial overgrowth in patients with blind-loop syndrome. Aliment Pharmacol Ther 21:985–992

    Article  Google Scholar 

  13. Stotzer PO, Blomberg L, Conway PL, Abrahamsson LH (1996) Probiotic treatment of small intestinal bacterial overgrowth by Lactobacillus fermentum KLD. Scand J Infect Dis 28:615–619

    CAS  Article  Google Scholar 

  14. Gopal PK, Prasad J, Smart J, Gill HS (2001) In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int J Food Microbiol 67:207–216

    CAS  Article  Google Scholar 

  15. Servin AL, Coconnier M-H (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 17:741–754

    CAS  Article  Google Scholar 

  16. Del Re B, Sgorbati B, Miglioli M, Palenzona D (2000) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31:438–442

    Article  Google Scholar 

  17. Pérez PF, Minnaard Y, Disalvo EA, De Antoni GL (1998) Surface properties of bifidobacterial strains of human origin. Appl Environ Microbiol 64:21–26

    Google Scholar 

  18. Wadstrom T, Andersson K, Sydow M, Axelsson L, Lindgren S, Gullmar B (1987) Surface properties of lactobacilli isolated from the small intestine of pigs. J Appl Microbiol 62:513–520

    CAS  Google Scholar 

  19. Chen X, Tian F, Liu X, Zhao J, Zhang HP, Zhang H et al (2010) In vitro screening of lactobacilli with antagonistic activity against Helicobacter pylori from traditionally fermented foods. J Dairy Sci 93:5627–5634

    CAS  Article  Google Scholar 

  20. Nikolic M, Jovcic B, Kojic M, Topisirovic L (2010) Surface properties of Lactobacillus and Leuconostoc isolates from homemade cheeses showing auto-aggregation ability. Eur Food Res Technol 231:925–931

    CAS  Article  Google Scholar 

  21. Andrabi ST, Bhat B, Gupta M, Bajaj BK (2016) Phytase-producing potential and other functional attributes of lactic acid bacteria isolates for prospective probiotic applications. Probiotics Antimicro Prot 8:121–129

    CAS  Article  Google Scholar 

  22. Abushelaibi A, Al-Mahadin S, El-Tarabily K, Shah NP, Ayyash M (2017) Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT - Food Sci Technol 79:316–325

    CAS  Article  Google Scholar 

  23. Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ et al (2010) The extracellular biology of the lactobacilli. FEMS Microbiol Rev 34:199–230

    CAS  Article  Google Scholar 

  24. Ubeda C, Pamer EG (2012) Antibiotics, microbiota, and immune defense. Trends Immunol 33:459–466

    CAS  Article  Google Scholar 

  25. Ivanov II (2012) Review intestinal commensal microbes as immune modulators. Cell Host Microbe 12:496–508

    CAS  Article  Google Scholar 

  26. Van Baarlen P, Wells JM, Kleerebezem M (2013) Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol 34:208–215

    Article  Google Scholar 

  27. Rausch P, Rehman A, Kunzel S, Hasler R, Ott SJ, Schreiber S et al (2011) Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (secretor) genotype. Proc Natl Acad Sci 108:19030–19035

    CAS  Article  Google Scholar 

  28. Hu J, Nomura Y, Bashir A, Fernandez-Hernandez H, Itzkowitz S, Pei Z et al (2013) Diversified microbiota of meconium is affected by maternal diabetes status. PLoS One 8:e78257

    CAS  Article  Google Scholar 

  29. Forslund K, Sunagawa S, Kultima JR, Mende DR, Arumugam M, Typas A et al (2013) Country-specific antibiotic use practices impact the human gut resistome. Genome Res 23:1163–1169

    CAS  Article  Google Scholar 

  30. Hu Y, Yang X, Qin J, Lu N, Cheng G, Wu N et al (2013) Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun 4:2151. doi:10.1038/ncomms3151

    Google Scholar 

  31. Kamada N, Chen GY, Inohara N, Núñez G (2013) Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14:685–690

    CAS  Article  Google Scholar 

  32. Hou C, Zeng X, Yang F, Liu H, Qiao S (2015) Study and use of the probiotic Lactobacillus reuteri in pigs: a review. J Anim Sci Biotechnol 6:14. doi:10.1186/s40104-015-0014-3

    Article  Google Scholar 

  33. Walter J (2008) Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74:4985–4996

    CAS  Article  Google Scholar 

  34. Lebeer S, Verhoeven TLA, Perea Vélez M, Vanderleyden J, De Keersmaecker SCJ (2007) Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol 73:6768–6775

    CAS  Article  Google Scholar 

  35. Wegkamp A, Teusink B, de Vos WM, Smid EJ (2010) Development of a minimal growth medium for Lactobacillus plantarum. Lett Appl Microbiol 50:57–64

    CAS  Article  Google Scholar 

  36. Zhou JSS, Gopal PKK, Gill HSS (2001) Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Int J Food Microbiol 63:81–90

    CAS  Article  Google Scholar 

  37. Bellon-Fontaine MN, Rault J, Van Oss CJ (1997) Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells. Colloids Surf B Biointerfaces 7:47–53

    Article  Google Scholar 

  38. Kos B, Šušković J, Vuković S, Šimpraga M, Frece J, Matošić S (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94:981–987

    CAS  Article  Google Scholar 

  39. Tagg JR, McGiven AR (1971) Assay system for bacteriocins. Appl Microbiol 21:943

    CAS  Google Scholar 

  40. Howe RA, Andrews JM (2012) BSAC standardized disc susceptibility testing method (version 11). J Antimicrob Chemother 67:2783–2784

    CAS  Article  Google Scholar 

  41. Corcoran BM, Stanton C, Fitzgerald GF, Ross RP (2005) Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl Environ Microbiol 71:3060–3067

    CAS  Article  Google Scholar 

  42. Mattarelli P, Holzapfel W, Franz CMAP, Endo A, Felis GE, Hammes W et al (2014) Recommended minimal standards for description of new taxa of the genera Bifidobacterium, Lactobacillus and related genera. Int J Syst Evol Microbiol 64:1434–1451

    Article  Google Scholar 

  43. Hamadi F, Latrache H (2008) Comparison of contact angle measurement and microbial adhesion to solvents for assaying electron donor–electron acceptor (acid–base) properties of bacterial surface. Colloids Surf B Biointerfaces 65:134–139

    CAS  Article  Google Scholar 

  44. Pereira de Sousa I, Steiner C, Schmutzler M, Wilcox MD, Veldhuis GJ, Pearson JP et al (2015) Mucus permeating carriers: formulation and characterization of highly densely charged nanoparticles. Eur J Pharm Biopharm 7:273–279

    Article  Google Scholar 

  45. Pelletier C, Bouley C, Cayuela C, Bouttier S, Bourlioux P, Bellon-Fontaine MN (1997) Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains. Appl Environ Microbiol 63:1725–1731

    CAS  Google Scholar 

  46. Dickson JS, Koohmaraie M (1989) Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Appl Environ Microbiol 55:832–836

    CAS  Google Scholar 

  47. Bron PA, Tomita S, van Swam II, Remus DM, Meijerink M, Wels M, Okada S et al (2012) Lactobacillus plantarum possesses the capability for wall teichoic acid backbone alditol switching. Microb Cell Factories 11:123. doi:10.1186/1475-2859-11-123

    CAS  Article  Google Scholar 

  48. Hughes AH, Hancock IC, Baddiley J (1973) The function of teichoic acids in cation control in bacterial membranes. Biochem J 132:83–93

    CAS  Article  Google Scholar 

  49. Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P (1999) The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Ant van Leeuwenh:159–184

  50. Lebeer S, Claes IJJ, Verhoeven TLA, Vanderleyden J, De Keersmaecker SCJ (2011) Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb Biotechnol 4:368–374

    CAS  Article  Google Scholar 

  51. Nagaoka M, Hashimoto S, Watanabe T, Yokokura T, Mori Y (1994) Anti-ulcer effects of lactic acid bacteria and their cell wall polysaccharides. Biol Pharm Bull 17:1012–1017

    CAS  Article  Google Scholar 

  52. Kitazawa H, Harata T, Uemura J, Saito T, Kaneko T, Itoh T (1998) Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int J Food Microbiol 40:169–175

    CAS  Article  Google Scholar 

  53. De Vuyst L, De Vin F, Vaningelgem F, Degeest B (2001) Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int Dairy J 11:687–707

    Article  Google Scholar 

  54. Francius G, Lebeer S, Alsteens D, Wildling L, Gruber HJ, Hols P et al (2008) Detection, localization, and conformational analysis of single polysaccharide molecules on live bacteria. ACS Nano 2:1921–1929

    CAS  Article  Google Scholar 

  55. Kravtsov EG, Yermolayev AV, Anokhina IV, Yashina NV, Chesnokova VL, Dalin M (2008) Adhesion characteristics of Lactobacillus is a criterion of the probiotic choice. Bull Exp Biol Med 145:232–234

    CAS  Article  Google Scholar 

  56. Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev 67:686–723

    CAS  Article  Google Scholar 

  57. Whitehead K, Versalovic J, Roos S, Britton RA (2008) Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol 74:1812–1819

    CAS  Article  Google Scholar 

  58. Lee YK, Salminen S (2009) Handbook of probiotics and prebiotics. 1st edn. John Wiley & Sons

  59. MacKenzie DA, Jeffers F, Parker ML, Vibert-Vallet A, Bongaerts RJ, Roos S et al (2010) Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri. Microbiology 156:3368–3378

    CAS  Article  Google Scholar 

  60. Ruas-Madiedo P, Gueimonde M, Margolles A, de los Reyes-Gavilán CG, Salminen S (2006) Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J Food Prot 69:2011–2015

    CAS  Article  Google Scholar 

  61. Rosenberg M (2006) Microbial adhesion to hydrocarbons: twenty-five years of doing MATH. FEMS Microbiol Lett 262:129–134

    CAS  Article  Google Scholar 

  62. Górska-Frączek S, Sandström C, Kenne L, Rybka J, Strus M, Heczko P et al (2011) Structural studies of the exopolysaccharide consisting of a non-saccharide repeating unit isolated from Lactobacillus rhamnosus KL37B. Carbohydr Res 346:2926–2932

    Article  Google Scholar 

  63. Kim B-R, Bae Y-M, Hwang J-H, Lee S-Y (2016) Biofilm formation and cell surface properties of Staphylococcus aureus isolates from various sources. Food Sci Biotechnol 25:643–648

    CAS  Article  Google Scholar 

  64. Fernández Ramírez MD, Smid EJ, Abee T, Nierop Groot MN (2015) Characterisation of biofilms formed by Lactobacillus plantarum WCFS1 and food spoilage isolates. Int J Food Microbiol 207:23–29

    Article  Google Scholar 

  65. Slížová M, Nemcová R, Mad’ar M, Hadryová J, Gancarčíková S, Popper M et al (2015) Analysis of biofilm formation by intestinal lactobacilli. Can J Microbiol 61:437–446

    Article  Google Scholar 

  66. Sharma P, Tomar SK, Sangwan V, Goswami P, Singh R (2016) Antibiotic resistance of Lactobacillus sp. isolated from commercial probiotic preparations. J Food Saf 36:38–51

    CAS  Article  Google Scholar 

  67. Egervärn M, Lindmark H, Olsson J, Roos S (2010) Transferability of a tetracycline resistance gene from probiotic Lactobacillus reuteri to bacteria in the gastrointestinal tract of humans. Ant van Leeuwenh 97:189–200

    Article  Google Scholar 

  68. Korhonen J, Van Hoek A, Saarela M, Huys G. Tosi L. Mayrhofer S, et al. (2010) Antimicrobial susceptibility of Lactobacillus rhamnosus. Benefic Microbes 1:75–80

  69. Danielsen M, Wind A, Leisner JJ, Arpi M (2007) Antimicrobial susceptibility of human blood culture isolates of Lactobacillus spp. Eur J Clin Microbiol Infect Dis 26:287–289

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon M. T. Dicks.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klopper, K.B., Deane, S.M. & Dicks, L.M.T. Aciduric Strains of Lactobacillus reuteri and Lactobacillus rhamnosus, Isolated from Human Feces, Have Strong Adhesion and Aggregation Properties. Probiotics & Antimicro. Prot. 10, 89–97 (2018). https://doi.org/10.1007/s12602-017-9307-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9307-5

Keywords

  • Lactobacillus reuteri
  • Lactobacillus rhamnosus
  • Adhesion
  • Aggregation
  • Probiotics