Skip to main content

Effects of Dietary Bacillus licheniformis on Gut Physical Barrier, Immunity, and Reproductive Hormones of Laying Hens

Abstract

Previous study showed that dietary Bacillus licheniformis (B. licheniformis) administration contributes to the improvement of laying performance and egg quality in laying hens. In this study, we aimed to further evaluate its underlying mechanisms. Three hundred sixty Hy-Line Variety W-36 hens (28 weeks of age) were randomized into four groups, each group with six replications (n = 15). The control group received the basal diet and the treatment groups received the same basal diets supplemented with 0.01, 0.03, and 0.06% B. licheniformis powder (2 × 1010 cfu/g) for an 8-week trial. The results demonstrate that B. licheniformis significantly enhance the intestinal barrier functions via decreasing gut permeability, promoting mucin-2 transcription, and regulating inflammatory cytokines. The systemic immunity of layers in B. licheniformis treatment groups is improved through modulating the specific and non-specific immunity. In addition, gene expressions of hormone receptors, including estrogen receptor α, estrogen receptor β, and follicle-stimulating hormone receptor, are also regulated by B. licheniformis. Meanwhile, compared with the control, B. licheniformis significantly increase gonadotropin-releasing hormone level, but markedly reduce ghrelin and inhibin secretions. Overall, our data suggest that dietary inclusion of B. licheniformis can improve the intestinal barrier function and systemic immunity and regulate reproductive hormone secretions, which contribute to better laying performance and egg quality of hens.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Khan SH, Atif M, Mukhtar N, Rehman A, Fareed G (2011) Effects of supplementation of multi-enzyme and multi-species probiotic on production performance, egg quality, cholesterol level and immune systemic in laying hens. J Appl Anim Res 39:386–398

    CAS  Article  Google Scholar 

  2. Nahashon SN, Nakaue HS, Mirosh LW (1994a) Production variables and nutrient retention in single comb White Leghorn laying pullets fed diets supplemented with direct-fed microbials. Poult Sci 73:1699–1711

    CAS  Article  Google Scholar 

  3. Nahashon SN, Nakaue HS, Snyder SP, Mirosh LW (1994b) Performance of single comb White Leghorn layers fed corn-soybean meal and barley-corn-soybean meal diets supplemented with a direct-fed microbial. Poult Sci 73:1712–1723

    CAS  Article  Google Scholar 

  4. Jin LZ, Ho YW, Abdullah N, Jalaludin S (1997) Probiotics in poultry: modes of action. World Poultry Sci J 53:351–368

    Article  Google Scholar 

  5. Coates ME, Fuller R (1977) The genotobiotic animal in the study of gut microbiology. Microbial ecology of the gut. Academic Press, London, pp 311–346

    Google Scholar 

  6. Saarela M, Mogensen G, Fonden R, Matto J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84:197–215

    CAS  Article  Google Scholar 

  7. Salianeha N, Shirzadb MR, Seifi S (2011) Performance and antibody response of broiler chickens fed diets containing probiotic and prebiotic. J Appl Anim Res 39:65–67

    Article  Google Scholar 

  8. Rolfe RD (2000) The role of probiotic cultures in the control of gastrointestinal health. J Nutr 130(2S Suppl):396S–402S

    CAS  Google Scholar 

  9. Tannock GW (2001) Molecular assessment of intestinal microflora. Am J Clin Nutr 73:410S–414S

    CAS  Google Scholar 

  10. Hong HA, Duc LH, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835

    CAS  Article  Google Scholar 

  11. Hagedorn SR, Bradley G, Chapman PJ (1985) Glutathione-independent isomerization of maleylpyruvate by Bacillus megaterium and other gram-positive bacteria. J Bacteriol 163:640–647

    CAS  Google Scholar 

  12. Cutting SM (2011) Bacillus probiotics. Food Microbiol 28:214–220

    Article  Google Scholar 

  13. Liu X, Yan H, Lv L, Xu Q, Yin C, Zhang K, Wang P, Hu J (2012) Growth performance and meat quality of broiler chickens supplemented with Bacillus licheniformis in drinking water. Asian-Australas J Anim Sci 25:682–689

    CAS  Article  Google Scholar 

  14. Rozs M, Manczinger L, Vagvolgyi C, Kevei F (2001) Secretion of a trypsin-like thiol protease by a new keratinolytic strain of Bacillus licheniformis. FEMS Microbiol Lett 205:221–224

    CAS  Article  Google Scholar 

  15. Kim Y, Cho JY, Kuk JH, Moon JH, Cho JI, Kim YC, Park KH (2004) Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, Chungkook-Jang. Curr Microbiol 48:312–317

    CAS  Article  Google Scholar 

  16. Lei K, Li YL, Yu DY, Rajput IR, Li WF (2013) Influence of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activities, and intestinal barrier function of laying hens. Poult Sci 92:2389–2395

    CAS  Article  Google Scholar 

  17. Ng SC, Hart AL, Kamm MA, Stagg AJ, Knight SC (2009) Mechanisms of action of probiotics: recent advances. Inflamm Bowel Dis 15:300–310

    CAS  Article  Google Scholar 

  18. Nikoskelainen S, Ouwehand AC, Bylund G, Salminen S, Lilius E (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol 15:443–452

    CAS  Article  Google Scholar 

  19. Zuberbuehler CA, Messikommer RE, Arnold MM, Forrer RS, Wenk C (2006) Effects of selenium depletion and selenium repletion by choice feeding on selenium status of young and old laying hens. Physiol Behav 87:430–440

    CAS  Article  Google Scholar 

  20. Cui X, Li Y, Liu R, Zheng M, Li Q, Wen J (2016) Follicle-stimulating hormone increases the intramuscular fat content and expression of lipid biosynthesis genes in chicken breast muscle. J Zhejiang Univ Sci B 17:303

    CAS  Article  Google Scholar 

  21. Lei K, Li YL, Wang Y, Wen J, Wu HZ, Yu DY, Li WF (2015) Effect of dietary supplementation of Bacillus subtilis B10 on biochemical and molecular parameters in the serum and liver of high-fat diet-induced obese mice. J Zhejiang Univ Sci B 16:487–495

    CAS  Article  Google Scholar 

  22. Hata H, Sakaguchi N, Yoshitomi H et al (2004) Distinct contribution of IL-6, TNF-α, IL-1, and IL-10 to T cell–mediated spontaneous autoimmune arthritis in mice. J Clin Invest 114:582–588

    CAS  Article  Google Scholar 

  23. Anderson JM, Van Italie CM, Fanning AS (2004) Setting up a selective barrier at the apical junction complex. Curr Opin Cell Biol 16:140–145

    CAS  Article  Google Scholar 

  24. Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14:141–153

    CAS  Article  Google Scholar 

  25. Deng W, Dong XF, Tong JM, Zhang Q (2012) The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poult Sci 91:575–582

    CAS  Article  Google Scholar 

  26. Yousefi M, Karkoodi K (2007) Effect of probiotic Thepax® and Saccharomyces cerevisiae supplementation on performance and egg quality of laying hens. Int J Poult Sci 6:52–54

    Article  Google Scholar 

  27. Yörük MA, Gül M, Hayirli A, Macit M (2004) The effects of supplementation of humate and probiotic on egg production and quality parameters during the late laying period in hens. Poult Sci 83:84–88

    Article  Google Scholar 

  28. Zihni C, Balda MS, Matter K (2014) Signaling at tight junctions during epithelial differentiation and microbial pathogenesis. J Cell Sci 127:3401–3413

    CAS  Article  Google Scholar 

  29. Mennigen R, Nolte K, Rijcken E, Utech M, Loeffler B, Senninger N, Bruewer M (2009) Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 296:G1140–G1149

    CAS  Article  Google Scholar 

  30. Ukena SN, Singh A, Dringenberg U et al (2007) Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One 2:e1308

    Article  Google Scholar 

  31. Resta-Lenert S, Barrett KE (2003) Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52:988–997

    CAS  Article  Google Scholar 

  32. Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 105:15064–15069

    CAS  Article  Google Scholar 

  33. Caballero-Franco C, Keller K, De Simone C, Chadee K (2007) The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 292:G315–G322

    CAS  Article  Google Scholar 

  34. Shimazu T, Villena J, Tohno M, Fujie H, Hosoya S, Shimosato T et al (2012) Immunobiotic Lactobacillus jensenii elicits anti-inflammatory activity in porcine intestinal epithelial cells by modulating negative regulators of the toll-like receptor signaling pathway. Infect Immun 80:276–288

    CAS  Article  Google Scholar 

  35. Perdigon G, Maldonado Galdeano C, Valdez JC, Medici M (2002) Interaction of lactic acid bacteria with the gut immune system. Eur J Clin Nutr 56(Suppl 4):S21–S26

    CAS  Article  Google Scholar 

  36. Liu YL, Huang JJ, Hou YQ et al (2008) Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. Br J Nutr 100:552–560

    CAS  Article  Google Scholar 

  37. Huang Y, Li YL, Huang Q et al (2012) Effect of orally administered Enterococcus faecium EF1 on intestinal cytokines and chemokines production of suckling piglets. Pak Vet J 32:81–84

    Google Scholar 

  38. Al-Sadi R, Boivin M, Ma T (2009) Mechanism of cytokine modulation of epithelial tight junction barrier. Front Biosci 14:2765–2778

    CAS  Article  Google Scholar 

  39. Smit HF, Dwars RM, Davelaar FG, Wijtten GA (1998) Observations on the influence of intestinal spirochaetosis in broiler breeders on the performance of their progeny and on egg production. Avian pathol: journal of the WVPA 27:133–141

    CAS  Article  Google Scholar 

  40. Izcue A, Coombes JL, Powrie F (2006) Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol Rev 212:256–271

    CAS  Article  Google Scholar 

  41. Isolauri E, Sutas Y, Kankaanpaa P, Arvilommi H, Salminen S (2001) Probiotics: effects on immunity. Am J Clin Nutr 73:444S–450S

    CAS  Google Scholar 

  42. Borchers AT, Selmi C, Meyers FJ, Keen CL, Gershwin ME (2009) Probiotics and immunity. J Gastroenterol 44:26–46

    Article  Google Scholar 

  43. Benyacoub J, Czarnecki-Maulden GL, Cavadini C, Sauthier T, Anderson RE, Schiffrin EJ, von der Weid T (2003) Supplementation of food with Enterococcus faecium (SF68) stimulates immune functions in young dogs. J Nutr 133:1158–1162

    CAS  Google Scholar 

  44. Koenen ME, Kramer J, van der Hulst R, Heres L, Jeurissen SH, Boersma WJ (2004) Immunomodulation by probiotic lactobacilli in layer- and meat-type chickens. Br Poult Sci 45:355–366

    CAS  Article  Google Scholar 

  45. Panda AK, Rama Rao SS, Raju VLN, Sharma SS (2008) Effect of probiotic (Lactobacillus sporogenes) feeding on egg production and quality, yolk cholesterol and humoral immune response of White Leghorn layer breeders. J Sci Food Agr 88:43–47

    CAS  Article  Google Scholar 

  46. Asli MM, Hosseini SA, Lotfollahian H, Shariatmadari F (2007) Effect of probiotics, yeast, vitamin E and vitamin C supplements on performance and immune response of laying hen during high environmental temperature. IntJ Poultry Sci 6:895–900

    Article  Google Scholar 

  47. Klasing KC (1988) Nutritional aspects of leukocytic cytokines. J Nutr 118:1436–1446

    CAS  Google Scholar 

  48. van Eck JH (1983) Effects of experimental infection of fowl with EDS’76 virus, infectious bronchitis virus and/or fowl adenovirus on laying performance. Vet Q 5:11–25

    Article  Google Scholar 

  49. Hampson DJ, McLaren AJ (1999) Experimental infection of laying hens with Serpulina intermedia causes reduced egg production and increased faecal water content. Avian Pathol 28:113–117

    CAS  Article  Google Scholar 

  50. Smith CA, Andrews JE, Sinclair AH (1997) Gonadal sex differentiation in chicken embryos: expression of estrogen receptor and aromatase genes. J Steroid Biochem Mol Biol 60:295–302

    CAS  Article  Google Scholar 

  51. Zhao LH, Chen JL, Xu H, Liu JW, Xu RF (2010) Cloning and expression of FSHb gene and the effect of FSHβ on the mRNA levels of FSHR in the local chicken. Asian Austral J Anim 23:292–301

    CAS  Article  Google Scholar 

  52. Wang XJ, Li Y, Song QQ, Guo YY, Jiao HC, Song ZG, Lin H (2013) Corticosterone regulation of ovarian follicular development is dependent on the energy status of laying hens. J Lipid Res 54:1860–1876

    CAS  Article  Google Scholar 

  53. Ikemoto T, Park MK (2007) Comparative analysis of the pituitary and ovarian GnRH systemics in the leopard gecko: signaling crosstalk between multiple receptor subtypes in ovarian follicles. J Mol Endocrinol 38:289–304

    CAS  Article  Google Scholar 

  54. Toshinai K, Mondal MS, Nakazato M, Date Y, Murakami N, Kojima M, Kangawa K, Matsukura S (2001) Upregulation of Ghrelin expression in the stomach upon fasting, insulin-induced hypoglycemia, and leptin administration. Biochem Biophys Res Commun 281:1220–1225

    CAS  Article  Google Scholar 

  55. Fernandez-Fernandez R, Tena-Sempere M, Aguilar E, Pinilla L (2004) Ghrelin effects on gonadotropin secretion in male and female rats. Neurosci Lett 362:103–107

    CAS  Article  Google Scholar 

  56. Fernandez-Fernandez R, Tena-Sempere M, Roa J, Castellano JM, Navarro VM, Aguilar E, Pinilla L (2007) Direct stimulatory effect of ghrelin on pituitary release of LH through a nitric oxide-dependent mechanism that is modulated by estrogen. Reproduction 133:1223–1232

    CAS  Article  Google Scholar 

  57. Jimenez-Krassel F, Winn ME, Burns D, Ireland JL, Ireland JJ (2003) Evidence for a negative intrafollicular role for inhibin in regulation of estradiol production by granulosa cells. Endocrinology 144:1876–1886

    CAS  Article  Google Scholar 

  58. Matzuk MM, Finegold MJ, Su J-GJ, Hsueh AJW, Bradley A (1992) Inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 360:313–319

    CAS  Article  Google Scholar 

  59. Matzuk MM, Finegold MJ, Mather JP, Krummen L, Lu H, Bradley A (1994) Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice. Proc Natl Acad Sci U S A 91:8817–8821

    CAS  Article  Google Scholar 

  60. Kumar TR, Wang Y, Matzuk MM (1996) Gonadotropins are essential modifier factors for gonadal tumor development in inhibin-deficient mice. Endocrinology 137:4210–4216

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by The National 863 Project (Grant No. 013AA102803D) and the Key Science and Technology Program of Zhejiang Province, China (Grant No. 2006C12086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifen Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All animal manipulations were conducted in accordance with the guidelines for animal welfare and approved by the Animal Welfare Committee of Animal Science College, Zhejiang University.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Du, W., Lei, K. et al. Effects of Dietary Bacillus licheniformis on Gut Physical Barrier, Immunity, and Reproductive Hormones of Laying Hens. Probiotics & Antimicro. Prot. 9, 292–299 (2017). https://doi.org/10.1007/s12602-017-9252-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9252-3

Keywords

  • Bacillus licheniformis
  • Intestinal barrier function
  • Hormone
  • Immunity