Skip to main content

Comparative Analysis of the Effects of Two Probiotic Bacterial Strains on Metabolism and Innate Immunity in the RAW 264.7 Murine Macrophage Cell Line

Abstract

Probiotic and potential probiotic bacterial strains are routinely prescribed and used as supplementary therapy for a variety infectious diseases, including enteric disorders among a wide range of individuals. While there are an increasing number of studies defining the possible mechanisms of probiotic activity, a great deal remains unknown regarding the diverse modes of action attributed to these therapeutic agents. More precise information is required to support the appropriate application of probiotics. To address this objective, we selected two probiotics strains, Lactobacillus acidophilus MTCC-10307 (LA) and Bacillus clausii MTCC-8326 (BC) that are frequently prescribed for the treatment of intestinal disorders and investigated their effects on the RAW 264.7 murine macrophage cell line. Our results reveal that LA and BC are potent activators of both metabolic activity and innate immune responses in these cells. We also observed that LA and BC possessed similar activity in preventing infection simulated in vitro in murine macrophages by Salmonella typhimurium serovar enterica.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alard J, Lehrter VR, Rhimi M, Mangin IN, Peucelle VR, Abraham AL, Mariadassou M, Maguin E, Waligoraâ-Dupriet AJ, Pot B, Wolowczuk I, Grangette C (2015) Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota. Environ Microbiol. doi:10.1111/1462-2920.13181

  2. Thompson A, van Moorlehem E, Aich P (2010) Probiotic-induced priming of innate immunity to protect against rotaviral infection. Probiotics Antimicrib Protein 2(2):90–97

    Article  Google Scholar 

  3. Bonora M, Wieckowski MR, Chinopoulos C, Kepp O, Kroemer G, Galluzzi L, Pinton P (2015) Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34(12):1475–1486

    CAS  Article  Google Scholar 

  4. Cambier CJ, Falkow S, Ramakrishnan L (2014) Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell 159(7):1497–1509

    CAS  Article  Google Scholar 

  5. Cole AM, Myant K, Reed KR, Ridgway RA, Athineos D, Van den Brink GR, Muncan V, Clevers H, Clarke AR, Sicinski P, Sansom OJ (2010) Cyclin D2-cyclin-dependent kinase 4/6 is required for efficient proliferation and tumorigenesis following Apc loss. Cancer Res 70(20):8149–8158

    CAS  Article  Google Scholar 

  6. Dongarra ML, Rizzello V, Muccio L, Fries W, Cascio A, Bonaccorsi I, Ferlazzo G (2013) Mucosal immunology and probiotics. Curr Allergy Asthma Rep 13(1):19–26

    CAS  Article  Google Scholar 

  7. Ecker J, Liebisch G, Englmaier M, Grandl M, Robenek H, Schmitz G (2010) Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc Natl Acad Sci USA 107(17):7817–7822

    CAS  Article  Google Scholar 

  8. Fernandez EM, Valenti VR, Rockel C, Hermann C, Pot B, Boneca IG, Grangette C (2011) Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 60(8):1050–1059

    CAS  Article  Google Scholar 

  9. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80

    Article  Google Scholar 

  10. Gill H, Prasad J (2008) Probiotics, immunomodulation, and health benefits. Adv Exp Med Biol 606:423–454

    CAS  Article  Google Scholar 

  11. Greene ER, Huang S, Serhan CN, Panigrahy D (2011) Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat 96(1–4):27–36

    CAS  Article  Google Scholar 

  12. Habil N, Al-Murrani W, Beal J, Foey A (2011) Probiotic bacterial strains differentially modulate macrophage cytokine production in a strain-dependent and cell subset-specific manner. Benef Microbes 2(4):283–293

    CAS  Article  Google Scholar 

  13. Hokamp K, Roche FM, Acab M, Rousseau M-E, Kuo B, Goode D, Aeschliman D, Bryan J, Babiuk LA, Hancock REW (2004) ArrayPipe: a flexible processing pipeline for microarray data. Nucleic Acids Res 32(Suppl. 2):W457–W459

    CAS  Article  Google Scholar 

  14. Honda R, Lowe ED, Dubinina E, Skamnaki V, Cook A, Brown NR, Johnson LN (2005) The structure of cyclin E1/CDK2: implications for CDK2 activation and CDK2-independent roles. EMBO J 24(3):452–463

    CAS  Article  Google Scholar 

  15. Imtiyaz HZ, Simon MC (2011) Hypoxia-inducible factors as essential regulators of inflammation. Curr Top Microbiol Immunol 345:105–120

    Google Scholar 

  16. Jourdan M, Reme T, Goldschmidt H, Fiol GV, Pantesco VR, De Vos J, Rossi JFO, Hose D, Klein B (2009) Gene expression of anti- and pro-apoptotic proteins in malignant and normal plasma cells. Br J Haematol 145(1):45–58

    CAS  Article  Google Scholar 

  17. Kajita A, Morizane S, Takiguchi T, Yamamoto T, Yamada M, Iwatsuki K (2015) Interferon-gamma enhances TLR3 expression and anti-viral activity in keratinocytes. J Investig Dermatol 135(8):2005–2011

    CAS  Article  Google Scholar 

  18. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44(D1):D457–D462

    Article  Google Scholar 

  19. Kang K, Reilly SM, Karabacak V, Gangl MR, Fitzgerald K, Hatano B, Lee CH (2008) Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab 7(6):485–495

    CAS  Article  Google Scholar 

  20. Koshiba T (2013) Mitochondrial-mediated antiviral immunity. Biochim Biophys Acta 1833(1):225–232

    CAS  Article  Google Scholar 

  21. Locasale JW, Cantley LC (2011) Metabolic flux and the regulation of mammalian cell growth. Cell Metab 14(4):443–451

    CAS  Article  Google Scholar 

  22. Lu H-P, Lai Y-C, Huang S-W, Chen H-C, Hsieh C-H, Yu H-T (2014) Spatial heterogeneity of gut microbiota reveals multiple bacterial communities with distinct characteristics. Sci Rep 4:6185

    CAS  Article  Google Scholar 

  23. Mailloux BJ, Fuller ME (2003) Determination of in situ bacterial growth rates in aquifers and aquifer sediments. Appl Environ Microbiol 69(7):3798–3808

    CAS  Article  Google Scholar 

  24. Martinez RCR, Bedani R, Saad SMI (2015) Scientific evidence for health effects attributed to the consumption of probiotics and prebiotics: an update for current perspectives and future challenges. Br J Nutr 114(12):1993–2015

    CAS  Article  Google Scholar 

  25. Minemura M, Shimizu Y (2015) Gut microbiota and liver diseases. World J Gastroenterol 21(6):1691–1702

    CAS  Article  Google Scholar 

  26. Ohashi W, Hattori K, Hattori Y (2015) Control of macrophage dynamics as a potential therapeutic approach for clinical disorders involving chronic inflammation. J Pharmacol Exp Therap 354(3):240–250

    CAS  Article  Google Scholar 

  27. Orrhage K, Nord CE (2000) Bifidobacteria and lactobacilli in human health. Drugs Exp Clin Res 26(3):95–111

    CAS  Google Scholar 

  28. Paolillo R, Carratelli CR, Sorrentino S, Mazzola N, Rizzo A (2009) Immunomodulatory effects of Lactobacillus plantarum on human colon cancer cells. Int Immunopharmacol 9(11):1265–1271

    CAS  Article  Google Scholar 

  29. Passariello A, Agricole P, Malfertheiner P (2014) A critical appraisal of probiotics (as drugs or food supplements) in gastrointestinal diseases. Curr Med Res Opin 30(6):1055–1064

    Article  Google Scholar 

  30. Schaale K, Peters KM, Murthy AM, Fritzsche AK, Phan MD, Totsika M, Robertson AAB, Nichols KB, Cooper MA, Stacey KJ (2016) Strain-and host species-specific inflammasome activation, IL-1b release, and cell death in macrophages infected with uropathogenic Escherichia coli. Mucosal Immunol 9(1):124–136

    CAS  Article  Google Scholar 

  31. Schokker D, Zhang J, Vastenhouw SPA, Heilig HGHJ, Smidt H, Rebel JMJ, Smits MA (2015) Long-lasting effects of early-life antibiotic treatment and routine animal handling on gut microbiota composition and immune system in pigs. PLoS ONE 10(2):e0116523

    Article  Google Scholar 

  32. Servin AL, Coconnier MH (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 17(5):741–754

    CAS  Article  Google Scholar 

  33. Spann NJ, Garmire LX, McDonald JG, Myers DS, Milne SB, Shibata N, Reichart D, Fox JN, Shaked I, Heudobler D, Raetz CR, Wang EW, Kelly SL, Sullards MC, Murphy RC, Merrill AH Jr, Brown HA, Dennis EA, Li AC, Ley K, Tsimikas S, Fahy E, Subramaniam S, Quehenberger O, Russell DW, Glass CK (2012) Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151(1):138–152

    CAS  Article  Google Scholar 

  34. Sun Q, Sun L, Liu HH, Chen X, Seth RB, Forman J, Chen ZJ (2006) The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24(5):633–642

    CAS  Article  Google Scholar 

  35. Sur A, Pradhan B, Banerjee A, Aich P (2015) Immune activation efficacy of indolicidin is enhanced upon conjugation with carbon nanotubes and gold nanoparticles. PLoS ONE 10(4):e0123905

    Article  Google Scholar 

  36. Thomas GD, Ruckerl D, Maskrey BH, Whitfield PD, Blaxter ML, Allen JE (2012) The biology of nematode- and IL4Ralpha-dependent murine macrophage polarization in vivo as defined by RNA-Seq and targeted lipidomics. Blood 120(25):e93–e104

    CAS  Article  Google Scholar 

  37. Vanderpool C, Yan F, Polk DB (2008) Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflamm Bowel Dis 14(11):1585–1596

    Article  Google Scholar 

  38. Wang J, Duncan D, Shi Z, Zhang B (2013) Web-based gene set analysis toolkit (WebGestalt): update 2013. Nucleic Acids Res 41(W1):W77–W83

    Article  Google Scholar 

  39. Wells JM, Rossi O, Meijerink M, van Baarlen P (2010) Epithelial crosstalk at the microbiota-mucosal interface. Proc Nat Acad Sci 108(Suppl. 1):4607–4614

    Google Scholar 

  40. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS, Ghosh S (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472(7344):476–480

    CAS  Article  Google Scholar 

  41. Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33(suppl 2):W741–W748

    CAS  Article  Google Scholar 

  42. Zhang M, Wang G, Tao Y, Zhang H (2015) The proinflammatory effect and molecular mechanism of IL-17 in the intestinal epithelial cell line HT-29. J BUON 20(1):120–127

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank DBT, India, for funding the work from 2010 to 2013. Authors would also acknowledge the facility and infrastructure provided by NISER to execute the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palok Aich.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pradhan, B., Guha, D., Ray, P. et al. Comparative Analysis of the Effects of Two Probiotic Bacterial Strains on Metabolism and Innate Immunity in the RAW 264.7 Murine Macrophage Cell Line. Probiotics & Antimicro. Prot. 8, 73–84 (2016). https://doi.org/10.1007/s12602-016-9211-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-016-9211-4

Keywords

  • Probiotics
  • Macrophage
  • Innate immunity
  • Pathogen