Skip to main content

Advertisement

Log in

Lactobacillus pentosus B231 Isolated from a Portuguese PDO Cheese: Production and Partial Characterization of Its Bacteriocin

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Bacteriocin B231 produced by Lactobacillus pentosus, isolated from an artisanal raw cow’s milk protected designation of origin Portuguese cheese, is a small protein with an apparent relative mass of about 5 kDa and active against a large number of Listeria monocytogenes wild-type strains, Listeria ivanovii and Listeria innocua. Bacteriocin B231 production is highly dependent on the type of the culture media used for growth of Lact. pentosus B231. Replacement of glucose with maltose yielded the highest bacteriocin production from eight different carbon sources. Similar results were recorded in the presence of combination of glucose and maltose or galactose. Production of bacteriocin B231 reached maximal levels of 800 AU/ml during the stationary phase of growth of Lact. pentosus B231 in MRS broth at 30 °C. Bacteriocin B231 (in cell-free supernatant) was sensitive to treatment with trypsin and proteinase K, but not affected by the thermal treatment in range of 55–121 °C, or freezing (−20 °C). Bacteriocin production and inhibitory spectrum were evaluated. Gene encoding plantaricin S has been detected in the genomic DNA. Virulence potential and safety of Lact. pentosus B231 were assessed by PCR targeted the genes gelE, hyl, asa1, esp, cylA, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc. The Lact. pentosus B231 strains harbored plantaricin S gene, while the occurrence of virulence, antibiotic resistance and biogenic amine genes was limited to cytolysin, hyaluronidase, aggregation substance, adhesion of collagen protein, gelatinase, tyrosine decarboxylase and vancomycin B genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3(10):777–788. doi:10.1038/nrmicro1273

    Article  CAS  Google Scholar 

  2. Todorov SD (2009) Bacteriocins from Lactobacillus plantarum production, genetic organization and mode of action: produção, organização genética e modo de ação. Braz J Microbiol 40:209–221

    Article  CAS  Google Scholar 

  3. Nishie M, Nagao J, Sonomoto K (2012) Antibacterial peptides “bacteriocins”: an overview of their diverse characteristics and applications. Biocontrol Sci 17(1):1–16

    Article  CAS  Google Scholar 

  4. Pritchard SR, Phillips M, Kailasapathy K (2010) Identification of bioactive peptides in commercial Cheddar cheese. Food Res Int 43(5):1545–1548

    Article  CAS  Google Scholar 

  5. Nakamura K, Arakawa K, Kawai Y, Yasuta N, Chujo T, Watanabe M, Iioka H, Tanioka M, Nishimura J, Kitazawa H, Tsurumi K, Saito T (2013) Food preservative potential of gassericin A-containing concentrate prepared from cheese whey culture supernatant of Lactobacillus gasseri LA39. Anim Sci J 84(2):144–149. doi:10.1111/j.1740-0929.2012.01048.x

    Article  CAS  Google Scholar 

  6. Yang E, Fan L, Jiang Y, Doucette C, Fillmore S (2012) Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express 2(1):48. doi:10.1186/2191-0855-2-48

    Article  Google Scholar 

  7. Cogan TM, Barbosa M, Beuvier E, Bianchi-Salvadori B, Cocconcelli PS, Fernandes I, Gomez J, Gomez R, Kalantzopoulos G, Ledda A, Medina M, Rea MC, Rodriguez E (1997) Characterization of the lactic acid bacteria in artisanal dairy products. J Dairy Res 64(03):409–421. doi:10.1017/S0022029997002185

    Article  CAS  Google Scholar 

  8. Powell JE, Witthuhn RC, Todorov SD, Dicks LMT (2007) Characterization of bacteriocin ST8KF produced by a kefir isolate Lactobacillus plantarum ST8KF. Int Dairy J 17(3):190–198. doi:10.1016/J.Idairyj.02.012

    Article  CAS  Google Scholar 

  9. Zhou K, Zhou W, Li P, Liu G, Zhang J, Dai Y (2008) Mode of action of pentocin 31-1: an antilisteria bacteriocin produced by Lactobacillus pentosus from Chinese traditional ham. Food Control 19(8):817–822

    Article  CAS  Google Scholar 

  10. Okkers DJ, Dicks LMT, Silvester M, Joubert JJ, Odendaal HJ (1999) Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. J Appl Microbiol 87(5):726–734. doi:10.1046/j.1365-2672.1999.00918.x

    Article  CAS  Google Scholar 

  11. Al Delgado, Brito D, Peres C, Noa-Arroyo F, Garrido-Fernandez A (2005) Bacteriocin production by Lactobacillus pentosus B96 can be expressed as a function of temperature and NaCl concentration. Food Microbiol 22(6):521–528

    Article  Google Scholar 

  12. Todorov SD, Dicks LMT (2004) Effect of medium components on bacteriocin production by Lactobacillus pentosus ST151BR, a strain isolated from beer produced by the fermentation of maize, barley and soy flour. World J Microb Biotechnol 20(6):643–650. doi:10.1023/B:Wibi.0000043196.09610.De

    Article  CAS  Google Scholar 

  13. Todorov SD, Dicks LMT (2007) Bacteriocin production by Lactobacillus pentosus ST712BZ isolated from boza. Braz J Microbiol 38(1):166–172

    Article  Google Scholar 

  14. Stecchini ML, Aquili V, Sarais I (1995) Behavior of Listeria monocytogenes in Mozzarella cheese in presence of Lactococcus lactis. Int J Food Microbiol 25(3):301–310

    Article  CAS  Google Scholar 

  15. Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkermans AD (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 143(Pt 9):2983–2989

    Article  CAS  Google Scholar 

  16. Mayr-Harting A, Hedges AJ, Berkeley RCW (1972) Chapter VII methods for studying bacteriocins. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 7, Part A. Academic Press, pp 315–422. doi:http://dx.doi.org/10.1016/S0580-9517(08)70618-4

  17. Tagg JR, McGiven AR (1971) Assay system for bacteriocins. Appl Microbiol 21(5):943–947

    CAS  Google Scholar 

  18. Ivanova I, Miteva V, Stefanova T, Pantev A, Budakov I, Danova S, Moncheva P, Nikolova I, Dousset X, Boyaval P (1998) Characterization of a bacteriocin produced by Streptococcus thermophilus 81. Int J Food Microbiol 42(3):147–158. doi:10.1016/s0168-1605(98)00067-1

    Article  CAS  Google Scholar 

  19. Todorov SD, Dicks LMT (2005) Pediocin ST18, an anti-listerial bacteriocin produced by Pediococcus pentosaceus ST18 isolated from boza, a traditional cereal beverage from Bulgaria. Process Biochem 40(1):365–370

    Article  CAS  Google Scholar 

  20. Schägger H, Von Jagow G (1987) Tricine-sodium dodecyl sulphate-polyacrylamide gel electrophoresis for the separation of protein in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  Google Scholar 

  21. Tolinacki M, Kojic M, Lozo J, Terzic-Vidojevic A, Topisirovic L, Fira D (2010) Characterization of the bacteriocin-producing strain Lactobacillus paracasei subsp. paracasei BGUB9. Arch Biol Sci 62(4):889–899. doi:10.2298/abs1004889t

    Article  Google Scholar 

  22. Murua A, Todorov SD, Vieira AD, Martinez RC, Cencic A, Franco BD (2013) Isolation and identification of bacteriocinogenic strain of Lactobacillus plantarum with potential beneficial properties from donkey milk. J Appl Microbiol 114(6):1793–1809. doi:10.1111/jam.12190

    Article  CAS  Google Scholar 

  23. Kruger MF, MdS Barbosa, Miranda A, Landgraf M, Destro MT, Todorov SD, Franco BDGM (2013) Isolation of bacteriocinogenic strain of Lactococcus lactis subsp. lactis from rocket salad (Eruca sativa Mill.) and evidences of production of a variant of nisin with modification in the leader-peptide. Food Control 33(2):467–476

    Article  CAS  Google Scholar 

  24. Toit MD, Franz CMAP, Dicks LMT, Holzapfel WH, Toit MD, Franz CMAP, Dicks LMT, Holzapfel WH (2000) Preliminary characterization of bacteriocins produced by Enterococcus faecium and Enterococcus faecalis isolated from pig faeces. J Appl Microbiol 88(3):482–494. doi:10.1046/j.1365-2672.2000.00986.x

    Article  Google Scholar 

  25. Aymerich T, Holo H, Havarstein LS, Hugas M, Garriga M, Nes IF (1996) Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62(5):1676–1682

    CAS  Google Scholar 

  26. Cintas LM, Casaus P, Fernández MF, Hernández PE, Cintas LM, Casaus P, Fernández MF, Hernández PE (1998) Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage and foodborne pathogenic bacteria. Food Microbiol 15(3):289–298. doi:10.1006/fmic1997.0160

    Article  CAS  Google Scholar 

  27. Remiger A, Ehrmann MA, Vogel RF (1996) Identification of bacteriocin-encoding genes in Lactobacilli by polymerase chain reaction (PCR). Syst Appl Microbiol 19(1):28–34

    Article  CAS  Google Scholar 

  28. Todorov SD, Rachman C, Fourrier A, Dicks LM, van Reenen CA, Prevost H, Dousset X (2011) Characterization of a bacteriocin produced by Lactobacillus sakei R1333 isolated from smoked salmon. Anaerobe 17(1):23–31. doi:10.1016/j.anaerobe.2010.01.004

    Article  CAS  Google Scholar 

  29. Macwana SJ, Muriana PM (2012) A ‘bacteriocin PCR array’ for identification of bacteriocin-related structural genes in lactic acid bacteria. J Microbiol Methods 88(2):197–204. doi:10.1016/j.mimet.2011.11.008

    Article  CAS  Google Scholar 

  30. Martin-Platero AM, Valdivia E, Maqueda M, Martinez-Bueno M (2009) Characterization and safety evaluation of enterococci isolated from Spanish goats’ milk cheeses. Int J Food Microbiol 132(1):24–32. doi:10.1016/j.ijfoodmicro.2009.03.010

    Article  CAS  Google Scholar 

  31. Rivas P, Alonso J, Moya J, de Gorgolas M, Martinell J, Fernandez Guerrero ML (2005) The impact of hospital-acquired infections on the microbial etiology and prognosis of late-onset prosthetic valve endocarditis. Chest 128(2):764–771. doi:10.1378/chest.128.2.764

    Article  Google Scholar 

  32. Vankerckhoven V, Van Autgaerden T, Vael C, Lammens C, Chapelle S, Rossi R, Jabes D, Goossens H (2004) Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J Clin Microbiol 42(10):4473–4479. doi:10.1128/jcm.42.10.4473-4479.2004

    Article  CAS  Google Scholar 

  33. Barbosa M (2000) Queijos da Serra da Estrela e Serpa—30 anos de Arte e Ciência em Retrospectiva. In: Encontro sobre Queijos Tradicionais Ibéricos, Porto, Portugal, 2000, pp 1–19

  34. Freitas AC, Pais C, Malcata FX, Hogg TA (1996) Microbiological characterization of Picante da Beira Baixa cheese. J Food Protect 59(2):155–160

    Google Scholar 

  35. Freitas AC, Sousa MJ, Malcata FX (1995) Effect of ripening time and the combination of ewe and goat milk on the microflora of Picante cheese. Ital J Food Sci 7(4):361–377

    Google Scholar 

  36. Mimoso MC, Firme MP, Carreira D (1990) Estudo dos grandes grupos microbianos que intervêm no processo de maturação do queijo de Azeitão. In: Jornadas das Indústrias Agro-Alimentares, Lisbon, Portugal, 1990. Faculdade de Medicina Veterinária, pp 286–292

  37. Duthoit F, Callon C, Tessier L, Montel M-C (2005) Relationships between sensorial characteristics and microbial dynamics in “registered designation of origin” Salers cheese. Int J Food Microbiol 103(3):259–270

    Article  Google Scholar 

  38. Manolopoulou E, Sarantinopoulos P, Zoidou E, Aktypis A, Moschopoulou E, Kandarakis IG, Anifantakis EM (2003) Evolution of microbial populations during traditional Feta cheese manufacture and ripening. Int J Food Microbiol 82(2):153–161

    Article  Google Scholar 

  39. Papademas P, Robinson RK (2000) A comparison of the chemical, microbiological and sensory characteristics of bovine and ovine Halloumi cheese. Int Dairy J 10(11):761–768

    Article  CAS  Google Scholar 

  40. Berta G, Chebenova V, Brezna B, Pangallo D, Valik L, Kuchta T (2009) Identification of lactic acid bacteria in Slovakian bryndza cheese. J Food Nutr Res 48(2):65–71

    CAS  Google Scholar 

  41. Koch J, Dworak R, Prager R, Becker B, Brockmann S, Wicke A, Wichmann-Schauer H, Hof H, Werber D, Stark K (2010) Large listeriosis outbreak linked to cheese made from pasteurized milk, Germany, 2006–2007. Foodborne Pathog Dis 7(12):1581–1584. doi:10.1089/fpd2010.0631

    Article  Google Scholar 

  42. de Vuyst L, Vandamme E (1994) Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Blackie Academic and Professional, London

    Book  Google Scholar 

  43. Lewus CB, Sun S, Montville TJ (1992) Production of an amylase-sensitive bacteriocin by an atypical Leuconostoc paramesenteroides strain. Appl Environ Microbiol 58(1):143–149

    CAS  Google Scholar 

  44. Keppler K, Geisen R, Holzapfel WH (1994) An α-amylase sensitive bacteriocin of Leuconostoc carnosum. Food Microbiol 11(1):39–45

    Article  CAS  Google Scholar 

  45. Todorov SD (2010) Diversity of bacteriocinogenic lactic acid bacteria isolated from boza, a cereal-based fermented beverage from Bulgaria. Food Control 21(7):1011–1021

    Article  CAS  Google Scholar 

  46. Klaenhammer TR (1988) Bacteriocins of lactic acid bacteria. Biochimie 70(3):337–349

    Article  CAS  Google Scholar 

  47. Todorov S, Onno B, Sorokine O, Chobert JM, Ivanova I, Dousset X (1999) Detection and characterization of a novel antibacterial substance produced by Lactobacillus plantarum ST 31 isolated from sourdough. Int J Food Microbiol 48(3):167–177. doi:10.1016/s0168-1605(99)00048-3

    Article  CAS  Google Scholar 

  48. Todorov SD, Dicks LMT (2004) Partial characterization of bacteriocins produced by four lactic acid bacteria isolated from regional South African barley beer. Ann Microbiol 54(4):403–413

    CAS  Google Scholar 

  49. Lee NK, Paik HD (2001) Partial characterization of lacticin NK24, a newly identified bacteriocin of Lactococcus lactis NK24 isolated from Jeot-gal. Food Microbiol 18(1):17–24. doi:10.1006/fmic2000.0368

    Article  CAS  Google Scholar 

  50. Ferchichi M, Frere J, Mabrouk K, Manai M (2001) Lactococcin MMFII, a novel class IIa bacteriocin produced by Lactococcus lactis MMFII, isolated from a Tunisian dairy product. FEMS Microbiol Lett 205(1):49–55

    Article  CAS  Google Scholar 

  51. Noonpakdee W, Santivarangkna C, Jumriangrit P, Sonomoto K, Panyim S (2003) Isolation of nisin-producing Lactococcus lactic WNC 20 strain from nham, a traditional Thai fermented sausage. Int J Food Microbiol 81(2):137–145

    Article  CAS  Google Scholar 

  52. Ivanova IKP, Pantev A, Danova S, Dousset X (2000) Detection, purification and partial characterization of a novel bacteriocin substance produced by Lactococcus lactis subsp. lactis B14 isolated from boza-Bulgarian traditional cereal beverage. Biocatalysis 41:47–53

    Google Scholar 

  53. Sanchez S, Chavez A, Forero A, Garcia-Huarte Y, Romero A, Sanchez M, Rocha D, Sanchez B, Avalos M, Guzman-Trampe S, Rodriguez-Sanoja R, Langley E, Ruiz B (2010) Carbon source regulation of antibiotic production. J Antibiot 63:442–459. doi:10.1038/ja.2010.78

    Google Scholar 

  54. Drosinos EH, Mataragas M, Nasis P, Galiotou M, Metaxopoulos J (2005) Growth and bacteriocin production kinetics of Leuconostoc mesenteroides E131. J Appl Microbiol 99(6):1314–1323. doi:10.1111/j.1365-2672.2005.02735.x

    Article  CAS  Google Scholar 

  55. De Carvalho AAT, Mantovani HC, Paiva AD, De Melo MR, De Carvalho AAT, Mantovani HC, Paiva AD, De Melo MR (2009) The effect of carbon and nitrogen sources on bovicin HC5 production by Streptococcus bovis HC5. J Appl Microbiol 107(1):339–347. doi:10.1111/j.1365-2672.2009.04212.x

    Article  Google Scholar 

  56. Aasen IM, Møretrø T, Katla T, Axelsson L, Storrø I (2000) Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Appl Microbiol Biotechnol 53(2):159–166. doi:10.1007/s002530050003

    Article  CAS  Google Scholar 

  57. Todorov SD, Favaro L, Gibbs P, Vaz-Velho M (2012) Enterococcus faecium isolated from Lombo, a Portuguese traditional meat product: characterisation of antibacterial compounds and factors affecting bacteriocin production. Benef Microbes 3(4):319–330. doi:10.3920/bm2012.0036

    Article  CAS  Google Scholar 

  58. Enan G, el-Essawy AA, Uyttendaele M, Debevere J (1996) Antibacterial activity of Lactobacillus plantarum UG1 isolated from dry sausage: characterization, production and bactericidal action of plantaricin UG1. Int J Food Microbiol 30(3):189–215

    Article  CAS  Google Scholar 

  59. Kelly WJ, Asmundson RV, Huang CM (1996) Characterization of plantaricin KW30, a bacteriocin produced by Lactobacillus plantarum. J Appl Microbiol 81(6):657–662. doi:10.1111/j.1365-2672.1996.tb03561.x

    Article  CAS  Google Scholar 

  60. Todorov SD, Dicks LM (2005) Optimization of bacteriocin ST311LD production by Enterococcus faecium ST311LD, isolated from spoiled black olives. J Microbiol 43(4):370–374

    CAS  Google Scholar 

  61. Daeschel MA, McKenney MC, McDonald LC (1990) Bacteriocidal activity of Lactobacillus plantarum C-11. Food Microbiol 7(2):91–98

    Article  CAS  Google Scholar 

  62. Todorov S, Gotcheva B, Dousset X, Onno B, Ivanova I (2000) Influence of growth medium on bacteriocin production in Lactobacillus plantarum ST31. Biotechnol Biotechnol Equip 14(1):50–55

    CAS  Google Scholar 

  63. Todorov SD, Wachsman MB, Knoetze H, Meincken M, Dicks LM (2005) An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans. Int J Antimicrob Agents 25(6):508–513. doi:10.1016/j.ijantimicag.2005.02.005

    Article  CAS  Google Scholar 

  64. Tomé E, Todorov SD, Gibbs PA, Teixeira PC (2009) Partial characterization of nine bacteriocins produced by lactic acid bacteria isolated from cold-smoked salmon with activity against Listeria monocytogenes. Food Biotechnol 23(1):50–73. doi:10.1080/08905430802671956

    Article  Google Scholar 

  65. Todorov SD, Dicks LMT (2005) Lactobacillus plantarum isolated from molasses produces bacteriocins active against gram-negative bacteria. Enzyme Microb Technol 36(2–3):318–326

    Article  CAS  Google Scholar 

  66. Todorov SD, van Reenen CA, Dicks LM (2004) Optimization of bacteriocin production by Lactobacillus plantarum ST13BR, a strain isolated from barley beer. J Gen Appl Microbiol 50(3):149–157

    Article  CAS  Google Scholar 

  67. Gomes BC, Esteves CT, Palazzo IC, Darini AL, Felis GE, Sechi LA, Franco BD, De Martinis EC (2008) Prevalence and characterization of Enterococcus spp. isolated from Brazilian foods. Food Microbiol 25(5):668–675. doi:10.1016/j.fm.2008.03.008

    Article  CAS  Google Scholar 

  68. Barbosa J, Gibbs PA, Teixeira P, Barbosa J, Gibbs PA, Teixeira P (2010) Virulence factors among enterococci isolated from traditional fermented meat products produced in the North of Portugal. Food Control 21(5):651–656. doi:10.1016/j.foodcont.2009.10.002

    Article  Google Scholar 

  69. Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67(4):1628–1635. doi:10.1128/aem.67.4.1628-1635.2001

    Article  CAS  Google Scholar 

  70. Franz CMAP, Muscholl-Silberhorn AB, Yousif NMK, Vancanneyt M, Swings J, Holzapfel WH (2001) Incidence of virulence factors and antibiotic resistance among Enterococci Isolated from food. Appl Environ Microbiol 67(9):4385–4389. doi:10.1128/aem.67.9.4385-4389.2001

    Article  CAS  Google Scholar 

  71. de Souza CP (2003) Pathogenicity mechanisms of prokaryotic cells: an evolutionary view. Braz J Infect Dis 7(1):23–31

    Google Scholar 

  72. Ercolini D, Hill PJ, Dodd CER (2003) Bacterial community structure and location in stilton cheese. Appl Environ Microbiol 69(6):3540–3548. doi:10.1128/aem.69.6.3540-3548.2003

    Google Scholar 

  73. Ercolini D, Moschetti G, Blaiotta G, Coppola S (2001) The potential of a polyphasic PCR-DGGE approach in evaluating microbial diversity of natural whey cultures for water-buffalo mozzarella cheese production: bias of culture-dependent and culture-independent analyses. Syst Appl Microbiol 24(4):610–617. doi:10.1078/0723-2020-00076

Download references

Acknowledgments

The authors would like to thank Dr. Margarida Saraiva and Dr. Isabel Campos Cunha from INSA-Porto for providing 30 Listeria monocytogenes wild-type strains isolated from food samples, which were used in this work for the sensitivity tests against B231 bacteriocin.

Conflict of interest

The authors’ declares that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetoslav Dimitrov Todorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerreiro, J., Monteiro, V., Ramos, C. et al. Lactobacillus pentosus B231 Isolated from a Portuguese PDO Cheese: Production and Partial Characterization of Its Bacteriocin. Probiotics & Antimicro. Prot. 6, 95–104 (2014). https://doi.org/10.1007/s12602-014-9157-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-014-9157-3

Keywords