Skip to main content

Advertisement

Log in

Antimicrobial Activity of Bacillus amyloliquefaciens ANT1 Toward Pathogenic Bacteria and Mold: Effects on Biofilm Formation

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The intensive use and misuse of antibiotics over the last decades have generated a strong selective pressure for the emergence of multi-resistant strains and nosocomial infections. Biofilm has been demonstrated as a key parameter in spreading infections, especially in hospitals and healthcare units. Therefore, the development of novel anti-biofilm drugs is actually of the upmost importance. Here, the antimicrobial and antibiofilm activities toward pathogenic microorganisms of a set of non-ribosomal synthesized peptides and polyketides isolated from Bacillus amyloliquefaciens ANT1 culture supernatant are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arguelles-Arias A, Craig M, Fickers P (2011) Gram-positive antibiotic biosynthetic cluster: a review. Science against microbial pathogen: communicating current research and technological advances. World Scientific Publ, New Jersey, pp 977–986

    Google Scholar 

  2. Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact 8:63

    Article  Google Scholar 

  3. Brooks JL, Jefferson K (2012) Staphylococcal biofilms: quest for the magic bullet. Adv Appl Microbiol 81:63–87

    Article  CAS  Google Scholar 

  4. Bryers J (2008) Medical biofilms. Biotechnol Bioeng 100:1–18

    Article  CAS  Google Scholar 

  5. Burmolle M, Webb JS, Rao D, Hansen LH, Sorensen SJ, Kjelleberg S (2006) Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 72:3916–3923

    Article  Google Scholar 

  6. Chen XH, Koumoutsi A, Scholz R, Borriss R (2009) More than anticipated—production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J Mol Microbiol Biotechnol 16:14–24

    Article  CAS  Google Scholar 

  7. Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Sussmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014

    Article  CAS  Google Scholar 

  8. Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Sussmuth R, Piel J, Borriss R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37

    Article  CAS  Google Scholar 

  9. Cushnie T, Lamb A (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    Article  CAS  Google Scholar 

  10. Do R, Kiss R, Gaudet D, Engert J (2009) Squalene synthase: a critical enzyme in the cholesterol biosynthesis pathway. Clin Genet 75:19–29

    Article  CAS  Google Scholar 

  11. Fickers P (2012) Antibiotic compounds from Bacillus: why are they so amazing? Am J Biochem Biotechnol 8:40–46

    Article  Google Scholar 

  12. Fickers P, Leclere V, Guez JS, Bechet M, Coucheney F, Joris B, Jacques P (2008) Temperature dependence of mycosubtilin homologue production in Bacillus subtilis ATCC6633. Res Microbiol 159:449–457

    Article  CAS  Google Scholar 

  13. Guida M, Nastro RA, Inglese M, Trifuoggi M, Scherillo S, Gesuele R, Di Onofrio V, Liguori G (2011) The hospital environment as a source of new antimicrobial substances: antimicrobial activity of Bacillus amyloliquefaciens strain HNA3 isolated in a surgery room. Science and technology against microbial pathogens. World Scientific Publishing, New jersey, pp 421–424

    Google Scholar 

  14. Gustafson K, Roman M, Fenical W (1989) The macrolactin, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. J Am Chem Sci 111:7519–7524

    Article  CAS  Google Scholar 

  15. Hall-Stoodley L, Stoodley P (2002) Developmental regulation of microbial biofilms. Curr Opin Biotechnol 13:228–233

    Article  CAS  Google Scholar 

  16. Hoiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PO, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65

    Article  Google Scholar 

  17. Khodavaisy S, Nabili M, Davari B, Vahedi M (2011) Evaluation of bacterial and fungal contamination in the health care workers’ hands and rings in the intensive care unit. J Prev Med Hyg 52:215–218

    CAS  Google Scholar 

  18. Landy M, Warren H, Roseman S, Golio L (1948) Bacillomycin; an antibiotic from Bacillus subtilis active against pathogenic fungi. Soc Exp Biol Med 67:539–541

    Article  CAS  Google Scholar 

  19. Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87:151–174

    Article  CAS  Google Scholar 

  20. Marouani-Gadri N, Augier G, Carpentier B (2009) Characterisation of bacterial strain isolated from a beef-processing plant following cleaning and disinfection: influence of isolated strains on biofilm formation by Sakaï EDL933 and E. coli O157:H7. Int J Food Microbiol 133:62–67

    Article  Google Scholar 

  21. Masterton R (2008) The importance and future of antimicrobial surveillance studies. Clinical infectious diseases. Inf Dis Sci Am 47(Suppl 1):S21–S31

    CAS  Google Scholar 

  22. Meier JL, Burkart MD (2009) The chemical biology of modular biosynthetic enzymes. Chem Sci Rev 38:2012–2045

    Article  CAS  Google Scholar 

  23. Merrit JH, Kadouri DE, O’Toole G (2011) Growing and analysing static biofilm. Curr Protoc Microbiol 22:1B.1.1–1B.1.18

    Google Scholar 

  24. Mireles J, Toguchi A, Harshey R (2001) Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854

    Article  CAS  Google Scholar 

  25. Nagao T, Adachi K, Sakai M, Nishijima M, Sano H (2001) Novel macrolactins as antibiotic lactones from a marine bacterium. J Antibiot 54:333–339

    Article  CAS  Google Scholar 

  26. Nastro RA, Di Costanzo A, Gesuele R, Trifuoggi M, Inglese M, Guida M (2011) Influence of temperature on the production of antibiotic molecules in Bacillus amyloliquefaciens strain HNA3. Science against microbial pathogens: communicating current research and technological advance. World Scientific Publishing, New Jersey, pp 1307–1310

    Google Scholar 

  27. Nordmann P, Naas T, Fortineau N, Poirel L (2007) Superbugs in the coming new decade; multidrug resistance and prospects for treatment of Staphylococcus aureus, Enterococcus spp. and Pseudomonas aeruginosa in 2010. Curr Opin Microbiol 10:436–440

    Article  CAS  Google Scholar 

  28. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  Google Scholar 

  29. Patel PS, Huang S, Fisher S, Pirnik D, Aklonis C, Dean L, Meyers E, Fernandes P, Mayerl F (1995) Bacillaene, a novel inhibitor of procaryotic protein synthesis produced by Bacillus subtilis: production, taxonomy, isolation, physico-chemical characterization and biological activity. J Antibiot 48:997–1003

    Article  CAS  Google Scholar 

  30. Rendueles O, Kaplan JB, Ghigo JM (2013) Antibiofilm polysaccharides. Environ Microbiol 15:334–346

    Article  CAS  Google Scholar 

  31. Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83:541–553

    Article  CAS  Google Scholar 

  32. Robbel L, Marahiel MA (2010) Daptomycin, a bacterial lipopeptide synthesized by a non ribosomal machinery. J Biol Chem 285:27501–27508

    Article  CAS  Google Scholar 

  33. Romero-Tabarez M, Jansen R, Sylla M, Lünsdorf H, Häussler S, Santosa DA, Timmis KN, Molinari G (2006) 7-O-malonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a small-colony variant of Burkholderia cepacia. Antimicrob Agents Chemother 50:1701–1709

    Article  CAS  Google Scholar 

  34. Rosenthal VD, Bijie H, Maki DG, Mehta Y, Apisarnthanarak A, Medeiros EA, Leblebicioglu H, Fisher D, Alvarez-Moreno C, Khader IA, Del Rocio Gonzalez Martinez M, Cuellar LE, Navoa-Ng JA, Abouqal R, Guanche Garcell H, Mitrev Z, Pirez Garcia MC, Hamdi A, Duenas L, Cancel E, Gurskis V, Rasslan O, Ahmed A, Kanj SS, Ugalde OC, Mapp T, Raka L, Yuet Meng C, Thu le TA, Ghazal S, Gikas A, Narvaez LP, Mejia N, Hadjieva N, Gamar Elanbya MO, Guzman Siritt ME, Jayatilleke K (2012) International Nosocomial Infection Control Consortium (INICC) report, data summary of 36 countries, for 2004–2009. Am J Infect Control 40:396–407

    Article  Google Scholar 

  35. Schneider K, Chen XH, Vater J, Franke P, Nicholson G, Borriss R, Sussmuth RD (2007) Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J Nat Products 70:1417–1423

    Article  CAS  Google Scholar 

  36. Sergent AP, Slekovec C, Pauchot J, Jeunet L, Bertrand X, Hocquet D, Pazart L, Talon D (2012) Bacterial contamination of the hospital environment during wound dressing change. OTSR 98:441–445

    Google Scholar 

  37. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Ann Rev Microbiol 56:187–209

    Article  CAS  Google Scholar 

  38. Strieker M, Tanovic A, Marahiel M (2010) Non ribosomal peptide synthetase: structure and dynamics. Curr Opin Struct Biol 20:234–240

    Article  CAS  Google Scholar 

  39. Toure Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160

    Article  CAS  Google Scholar 

  40. Wilson KE, Flor JE, Schwartz RE, Joshua H, Smith JL, Pelak BA, Liesch JM, Hensens OD (1987) Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. II Isolation and physico-chemical characterization. J Antibiot 40:1682–1691

    Article  CAS  Google Scholar 

  41. Xu H, Zou Y, Lee HY, Ahn J (2010) Effect of NaCl on the biofilm formation by foodborne pathogens. J Food Sci 75:580–585

    Article  Google Scholar 

  42. Yang L, Liu Y, Markussen T, Hoiby N, Tolker-Nielsen T, Molin S (2011) Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa. FEMS Imm Med Microbiol 62:339–347

    Article  CAS  Google Scholar 

  43. Zeigler DR (2003) Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Environ Microbiol 53:1893–1900

    Article  CAS  Google Scholar 

  44. Zimmerman SB, Schwartz CD, Monaghan RL, Pelak BA, Weissberger B, Gilfillan EC, Mochales S, Hernandez S, Currie SA, Tejera E (1987) Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. I. Production, taxonomy and antibacterial activity. J Antibiot 40:1677–1681

    Article  CAS  Google Scholar 

  45. Zweerink M, Edison A (1987) Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. III. Mode of action of difficidin. J Antibiot 40:1692–1697

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank R. Gesuele, L. Lista and A. Zanfardino for their kind help and advice. A. Arguelles-Arias is recipient of a FRIA fellowship (Belgium).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco Guida or Patrick Fickers.

Additional information

Rosa Anna Nastro and Anthony Arguelles-Arias contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nastro, R.A., Arguelles-Arias, A., Ongena, M. et al. Antimicrobial Activity of Bacillus amyloliquefaciens ANT1 Toward Pathogenic Bacteria and Mold: Effects on Biofilm Formation. Probiotics & Antimicro. Prot. 5, 252–258 (2013). https://doi.org/10.1007/s12602-013-9143-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-013-9143-1

Keywords

Navigation