Probiotics and Antimicrobial Proteins

, Volume 5, Issue 1, pp 18–25 | Cite as

A Novel Depsipeptide Produced by Paenibacillus alvei 32 Isolated from a Cystic fibrosis Patient

  • Romain Chevrot
  • Sandrine Didelot
  • Larissa Van den Bossche
  • Fatoumata Tambadou
  • Thibault Caradec
  • Pierre Marchand
  • Esther Izquierdo
  • Valérie Sopéna
  • Jocelyne Caillon
  • Cyrille Barthélémy
  • Ann Van Schepdael
  • Jos Hoogmartens
  • Eric Rosenfeld
Article

Abstract

The important viscosity of the respiratory tract mucus of Cystic fibrosis (CF) patients impairs the mucociliary transport system and allows the growth of numerous micro-organisms. Among them, Pseudomonas aeruginosa and Staphylococcus aureus are known to be responsible for pulmonary infections. We imagined that CF microflora could also harbour micro-organisms naturally equipped to compete with these pathogens. A method was developed to recover these antibiotic-producing strains within 20 CF sputum. Using this approach, we have isolated an unusual Gram-positive bacterium identified as Paenibacillus alvei by Api galleries and 16S rRNA gene sequence analysis. This strain has inhibited the growth of P.aeruginosa, S. aureus and Klebsiella pneumoniae, in co-cultures. A liquid mineral medium named MODT50 was designed and optimised for the production and the recovery of the antimicrobial compounds. The supernatant has inhibited the growth of all Gram-positive strains tested, even Methicillin-resistant S.aureus. One antimicrobial compound with a peptide structure (mainly active against S.aureus, Micrococcus luteus, and Pseudomonas stutzeri) has been purified and characterised by liquid chromatography-mass spectrometry. The new active molecule (m/z 786.6) named depsipeptide l possesses a 15-guanidino-3-hydroxypentadecanoic acid side chain (m/z 298) linked on a cyclic part of four amino acids residues (Ser, two Leu/Ile, Arg). This work reports for the first time the production of such a molecule by a P.alvei strain in a mineral medium. The CF lung microflora might represent a valuable source for the discovery of new antimicrobial-producing strains.

Keywords

Paenibacillus alvei Antimicrobial-peptide Cystic fibrosis Depsipeptide Fusaricidin 

References

  1. 1.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  2. 2.
    Anandaraj B, Vellaichamy A, Kachman M, Selvamanikandan A, Pegu S, Murugan V (2009) Co-production of two new peptide antibiotics by a bacterial isolate Paenibacillus alvei NP75. Biochem Biophys Res Commun 379:179–185CrossRefGoogle Scholar
  3. 3.
    Beatty PH, Jensen SE (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol 48:159–169CrossRefGoogle Scholar
  4. 4.
    Bittar F, Rolain JM (2010) Detection and accurate identification of new or emerging bacteria in Cystic fibrosis patients. Clin Microbiol Infect 16:809–820CrossRefGoogle Scholar
  5. 5.
    Butler WR, Sheils CA, Brown-Elliott BA, Charles N, Colin AA, Gant MJ, Goodill J, Toney SR, Wallace RJ Jr, Yakrus MA (2007) First isolations of Segniliparus rugosus from patients with Cystic fibrosis. J Clin Microbiol 45:3449–3452CrossRefGoogle Scholar
  6. 6.
    Chevrot R, Carlotti A, Sopena V, Marchand P, Rosenfeld E (2008) Megamonas rupellensis sp. nov., an anaerobe isolated from the caecum of a duck. Int J Syst Evol Microbiol 58:2921–2924CrossRefGoogle Scholar
  7. 7.
    Coenye T, Goris J, Spilker T, Vandamme P, LiPuma JJ (2002) Characterization of unusual bacteria isolated from respiratory secretions of Cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov. J Clin Microbiol 40:2062–2069CrossRefGoogle Scholar
  8. 8.
    Coudron PE, Payne JM, Markowitz SM (1991) Pneumonia and empyema infection associated with a Bacillus species that resembles B. alvei. J Clin Microbiol 29:1777–1779Google Scholar
  9. 9.
    Deng Y, Lu Z, Bi H, Lu F, Zhang C, Bie X (2011) Isolation and characterization of peptide antibiotics LI-F04 and polymyxin B6 produced by Paenibacillus polymyxa strain JSa-9. Peptides 32:1917–1923CrossRefGoogle Scholar
  10. 10.
    Deng Y, Lu Z, Lu F, Zhang C, Wang Y, Zhao H, Bie X (2011) Identification of LI-F type antibiotics and di-n-butyl phthalate produced by Paenibacillus polymyxa. J Microbiol Methods 85:175–182CrossRefGoogle Scholar
  11. 11.
    Didelot S, Bordenave-Juchereau S, Rosenfeld E, Piot JM, Sannier F (2006) Peptides released from acid goat whey by a yeast--Lactobacillus association isolated from cheese microflora. J Dairy Res 73:163–170CrossRefGoogle Scholar
  12. 12.
    Ding R, Wu XC, Qian CD, Teng Y, Li O, Zhan ZJ, Zhao YH (2011) Isolation and identification of lipopeptide antibiotics from Paenibacillus elgii B69 with inhibitory activity against methicillin-resistant Staphylococcus aureus. J Microbiol 49:942–949CrossRefGoogle Scholar
  13. 13.
    Donadio S, Monciardini D, Sosio M (2007) Polypeptide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24:1073–1109CrossRefGoogle Scholar
  14. 14.
    Felnagle EA, Jackson EE, Chan YA, Podevels AM, Berti AD, McMahon MD, Thomas MG (2007) Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol Pharm 5:191–211CrossRefGoogle Scholar
  15. 15.
    Geoffroy C, Mengaud J, Alouf JE, Cossart P (1990) Alveolysin, the thiol-activated toxin of Bacillus alvei, is homologous to listeriolysin O, perfringolysin O, pneumolysin, and streptolysin O and contains a single cysteine. J Bacteriol 12:7301–7305Google Scholar
  16. 16.
    Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of pulmonary infections in Cystic fibrosis. Am J Respir Crit Care Med 168:918–951CrossRefGoogle Scholar
  17. 17.
    Harrison F (2007) Microbial ecology of the Cystic fibrosis lung. Microbiology 153:917–923CrossRefGoogle Scholar
  18. 18.
    Hermsen ED, Sullivan CJ, Rotschafer JC (2003) Polymyxins: pharmacology, pharmacokinetics, pharmacodynamics, and clinical application. Infect Dis Clin North Am 17:545–562CrossRefGoogle Scholar
  19. 19.
    Jewes LA, Spencer RC (1990) The incidence of anaerobes in the sputum of patients with Cystic fibrosis. J Med Microbiol 31:271–274CrossRefGoogle Scholar
  20. 20.
    Kajimura Y, Kaneda M (1996) Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot 49:129–135CrossRefGoogle Scholar
  21. 21.
    Kajimura Y, Kaneda M (1997) Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. J Antibiot 50:220–228CrossRefGoogle Scholar
  22. 22.
    Kleinkauf H, von Dohren H (1990) Nonribosomal biosynthesis of peptide antibiotics. Eur J Biochem 192:1–15CrossRefGoogle Scholar
  23. 23.
    Kuroda J, Fukai T, Konishi M, Uno J, Kurusu K, Nomura T (2000) LI-F Antibiotics, a family of antifungal cyclic depsipeptides produced by Bacillus polymyxa L-1129. Heterocycles 53:1533–1549CrossRefGoogle Scholar
  24. 24.
    Lau GW, Hassett DJ, Britigan BE (2005) Modulation of lung epithelial functions by Pseudomonas aeruginosa. Trends Microbiol 13:389–397CrossRefGoogle Scholar
  25. 25.
    Leão RS, Pereira RH, Ferreira AG, Lima AN, Albano RM, Marques EA (2010) First report of Paenibacillus cineris from a patient with Cystic fibrosis. Diagn Microbiol Infect Dis 66:101–103CrossRefGoogle Scholar
  26. 26.
    Li J, Beatty PK, Shah S, Jensen SE (2007) Use of PCR-targeted mutagenesis to disrupt production of fusaricidin-type antifungal antibiotics in Paenibacillus polymyxa. Appl Environ Microbiol 76:3480–3489CrossRefGoogle Scholar
  27. 27.
    Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510CrossRefGoogle Scholar
  28. 28.
    Pereira MF, Chevrot R, Rosenfeld E, Thiery V, Besson T (2007) Synthesis and evaluation of the antimicrobial activity of novel quinazolinones. J Enzyme Inhib Med Chem 22:577–583CrossRefGoogle Scholar
  29. 29.
    Reboli AC, Bryan CS, Farrar WE (1989) Bacteremia and infection of a hip prosthesis caused by Bacillus alvei. J Clin Microbiol 27:1395–1396Google Scholar
  30. 30.
    Reynaldi FJ, De Giusti MR, Alippi AM (2004) Inhibition of the growth of Ascosphaera apis by Bacillus and Paenibacillus strains isolated from honey. Rev Argent Microbiol 36:52–55Google Scholar
  31. 31.
    Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Kehagia V, Connett GJ, Bruce KD (2006) Use of 16S rRNA gene profiling by terminal restriction fragment length polymorphism analysis to compare bacterial communities in sputum and mouthwash samples from patients with Cystic fibrosis. J Clin Microbiol 44:2601–2604CrossRefGoogle Scholar
  32. 32.
    Rosenfeld E, Duport C, Zigha A, Schmitt P (2005) Characterization of aerobic and anaerobic vegetative growth of the food-borne pathogen Bacillus cereus F4430/73 strain. Can J Microbiol 51:149–158CrossRefGoogle Scholar
  33. 33.
    Sibley CD, Parkins MD, Rabin HR, Duan K, Norgaard JC, Surette MG (2008) A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in Cystic fibrosis patients. PNAS 105:15070–15075CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Romain Chevrot
    • 1
  • Sandrine Didelot
    • 1
  • Larissa Van den Bossche
    • 4
  • Fatoumata Tambadou
    • 1
  • Thibault Caradec
    • 2
  • Pierre Marchand
    • 1
  • Esther Izquierdo
    • 1
  • Valérie Sopéna
    • 1
  • Jocelyne Caillon
    • 3
  • Cyrille Barthélémy
    • 1
  • Ann Van Schepdael
    • 4
  • Jos Hoogmartens
    • 4
  • Eric Rosenfeld
    • 1
  1. 1.Laboratoire Littoral Environnement et Sociétés, LIENSsUniversité de La Rochelle, UMR 7266, CNRSRochelle Cedex 1France
  2. 2.Laboratoire ProBioGemUniversité des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance
  3. 3.Laboratoire de Thérapeutique Clinique & Expérimentale, Faculté de MédecineUPRES EA 3826NantesFrance
  4. 4.Faculteit Farmaceutische WetenschappenLaboratorium voor Farmaceutische AnalyseLeuvenBelgium

Personalised recommendations